首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   365篇
  免费   22篇
  2023年   5篇
  2022年   21篇
  2021年   22篇
  2020年   8篇
  2019年   18篇
  2018年   14篇
  2017年   14篇
  2016年   13篇
  2015年   17篇
  2014年   23篇
  2013年   25篇
  2012年   28篇
  2011年   26篇
  2010年   14篇
  2009年   9篇
  2008年   25篇
  2007年   16篇
  2006年   12篇
  2005年   11篇
  2004年   9篇
  2003年   12篇
  2002年   6篇
  2001年   3篇
  1999年   3篇
  1998年   6篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1951年   1篇
排序方式: 共有387条查询结果,搜索用时 15 毫秒
11.
The regulation of amino acid transport in L6 muscle cells by amino acid deprivation was investigated. Proline uptake was Na+-dependent, saturable and concentrative, and was predominantly through system A. Proline uptake was inhibited by alanine, α-amino isobutyric acid (AIB), and by α-methylamino isobutyric acid, but not by lysine or valine. At 25°C, Km of proline uptake was 0.5 mM. Amino acid-deprivation resulted in a progressive increase in the rate of proline uptake, reaching up to 6-fold stimulation after 6 hours. The basal and stimulated transport were equally Na+-dependent, and both were inhibited by competition with the same amino acids. Kinetic analysis showed that Km decreased by a factor of 2.4 and Vmax increased 1.9-fold in deprived cells. Amino acid-deprivation did not stimulate amino acid uptake through systems other than system A. This suggests that the higher Km in proline-supplemented cells is not due to release of intracellular amino acids into unstirred layers surrounding the cells. The presence of amino acids which are substrates of system A (including AIB) during proline-deprivation, prevented stimulation of proline uptake, whereas those transported by systems Ly+ or L exclusively were ineffective. The stimulation of the transport-rate in deprived cells could be reversed by subsequent exposure to proline or other substrates of system A. L6 cells, deprived of proline for 6 hours, retained the stimulation of transport after detachment from the monolayers with trypsin. Uptake rates were comparable in suspended and attached cells in monolayer culture. Thus, amino acid-depreivation of L6 cells results in an adaptive increase in proline uptake, which is not due to unstirred layers but appears to be mediated by other mechanisms of selective transport regulation.  相似文献   
12.
The quantification, localization, production, function, and regulation of irisin/FNDC5 in camel species have not been previously studied. The objective of this study was to detect the irisin content in Arabian camel blood and tissues and study the gene expression of FNDC5 and PGC-1α in camel skeletal muscles and white adipose tissue depots under basal conditions. To monitor if exercise influences blood and tissue irisin protein levels as well as FNDC5 and PGC-1α gene expression levels, we analyzed irisin concentrations in the serum, skeletal muscles (soleus and gastrocnemius), and white adipose tissues (hump, subcutaneous, visceral, epididymal, and perirenal) in both control (n = 6) and exercised group (n = 6) using ELISA and determined the cellular localization of irisin/FNDC5 and the mRNA levels of FNDC5 and PGC-1α in skeletal muscles and adipose tissues via immunohistochemistry and real-time PCR, respectively. The possible regulatory roles of exercise on some hormones and metabolites as well as the detection of links between serum irisin and other circulating hormones (insulin, leptin, and cortisol) and metabolites (glucose, free fatty acids, triglycerides, and ATP) were explored for the first time in camels. Our results indicated that exercise induces tissue-specific regulation of the camel irisin, FNDC5, and PGC-1α levels, which subsequently regulates the circulating irisin level. Significant associations were detected between the levels of irisin/FNDC5/PGC-1α in camels and the metabolic and hormonal responses to exercise. Our study suggested that irisin regulates, or is regulated by, glucose, FFA, insulin, leptin, and cortisol in camels. The novel results of the present study will serve as baseline data for camels.  相似文献   
13.

MicroRNAs (miRNAs) play important roles in liver pathologies and they are potential biomarkers for diagnosis of liver diseases progression. Changes in miRNA sera expression can be used as non-invasive biomarkers for hepatocellular carcinoma (HCC). The aim of the study was to identify the miRNome profiling of HCC and its diagnostic value in distinguishing HCC from healthy individuals. Expression profiles of miRNAs in serum samples of 20 HCC patients and 10 healthy controls were detected. Whole miRNome profiling was done using next generation sequencing. Receiver operating characteristic (ROC) analysis was performed to assess the diagnostic performance of the deregulated miRNAs for discriminating HCC cases from healthy controls. MiRNA 142 was highly expressed in HCC (P value?=?0.023) while miRNAs 191, 22, and 126 were higher in the controls (P value?=?0.005, 0.034, 0.010 respectively). We have identified 5 novel miRNAs and they were highly expressed in HCC than controls. Analysis of ROC curve demonstrated that these deregulated miRNAs can be used as a reliable biomarker for detection of HCC with high diagnostic accuracy (AUC?=?0.93). We have detected a panel of serum miRNAs that can be used as a reliable noninvasive screening biomarker of HCC. The study recommends further research to shed light on a possible role of the newly discovered novel miRNAs in HCC pathogenesis.

  相似文献   
14.
Molecular Biology Reports - Arsenic is a potent and toxic heavy metal found in the environment that causes health problems, including liver disease, in humans and animals. Chlorogenic acid (CA) is...  相似文献   
15.
Antimicrobial peptides produced by multicellular organisms as part of their innate system of defense against microorganisms are currently considered potential alternatives to conventional antibiotics in case of infection by multiresistant bacteria. However, while the mode of action of antimicrobial peptides is relatively well described, resistance mechanisms potentially induced or selected by these peptides are still poorly understood. In this work, we studied the mechanisms of action and resistance potentially induced by ApoEdpL-W, a new antimicrobial peptide derived from human apolipoprotein E. Investigation of the genetic response of Escherichia coli upon exposure to sublethal concentrations of ApoEdpL-W revealed that this antimicrobial peptide triggers activation of RcsCDB, CpxAR, and σE envelope stress pathways. This genetic response is not restricted to ApoEdpL-W, since several other antimicrobial peptides, including polymyxin B, melittin, LL-37, and modified S4 dermaseptin, also activate several E. coli envelope stress pathways. Finally, we demonstrate that induction of the CpxAR two-component system directly contributes to E. coli tolerance toward ApoEdpL-W, polymyxin B, and melittin. These results therefore show that E. coli senses and responds to different antimicrobial peptides by activation of the CpxAR pathway. While this study further extends the understanding of the array of peptide-induced stress signaling systems, it also provides insight into the contribution of Cpx envelope stress pathway to E. coli tolerance to antimicrobial peptides.  相似文献   
16.
Nanomedicine is one of the most important methods used to treat human diseases including parasitic diseases. Schistosomiasis is a major parasitic disease that affects human health in tropical regions. Whilst Praziquantel is the main classic antischistosomal drug, new drugs are required due to the poor effect of the drug on the parasite juveniles and immature worms, and the emergence of drug resistant strains of Schistosoma. The present study aimed to examine the curative roles of both gold and selenium nanoparticles on jejunal tissues of mice infected with Schistosoma mansoni. Transmission electron microscopy was used for characterization of nanoparticles. Gold nanoparticles of 1 mg/kg mice body weight and selenium nanoparticles 0.5 mg/kg body weight were inoculated separately into mice infected with S. mansoni. The parasite induced a significant decrease in glutathione levels; however, the levels of nitric oxide and malondialdehyde were significantly increased. Additionally, the parasite introduced deteriorations in histological architecture of the jejunal tissue. Treatment of mice with metal nanoparticles reduced the levels of body weight changes, oxidative stress and histological impairment in the jejunal tissue significantly. Therefore, our results revealed the protective role of both selenium and gold nanoparticles against jejunal injury in mice infected with S. mansoni.  相似文献   
17.
ABSTRACT

Biomphalaria alexandrina snails have been used as bioindicators for freshwater qaulity and the effects of some herbicides such as butralin, glyphosate-isopropylammonium and pendimethalin). In the present study the effect of these three herbicides on snail biochemistry was examined. The results indicated that the herbicides increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the haemolymph of B. alexandrina snails and significantly decreased total protein and albumin content. Light microscopical examinations of haemocytes monolayers of B. alexandrina snails showed three different cell types (small cells, granulocytes and hyalinocytes). All three herbicides caused abnormalities in cell shapes. Flow cytometric analysis of haemocytes from B. alexandrina demonstrated that circulating haemocyte populations could be divided into two main subtypes differing in their granularity (granulocytes or hyalinocytes) and size (large and small cells). In addition, the flow cytometric analysis showed that the total number of dead haemocytes in the haemolymph was significantly increased in treated groups compared to the control group. Phagocytosis in groups treated with the herbicides was highly significantly increased compared to the control indicating a very strong response of the treated snails. The results of the alkaline comet assay of DNA damage demonstrated that these herbicides have a genotoxic effect.  相似文献   
18.
19.
This work aims to enhance the flavor of functional cucumber juice using herbal extracts of peppermint, basil, lavender, and lemongrass ethanolic extracts and extend its lifetime by controlling the chemical and microbial fluctuations. Cucumber juices were processed as; non-supplemented (J-Con), J-PME, J-BE, J-LE, and J-LEE supplemented with peppermint, basil, lavender, and lemongrass ethanolic extracts, respectively. Peppermint extract was significantly scavenged 88% of DPPH radicals and inhibited the growth of tested gram-positive, gram-negative bacteria and fungi followed by the lemongrass extract. The antioxidant activity of cucumber juices increased due to polyphenols and aroma compounds in the added extracts. However, the antioxidant content was decreased after two months of storage at 4 °C, due to the decrease in polyphenols. The flavor compounds were determined using GC mass, wherein hydrocarbons, acids, alcohols, and carbonyl compounds were the main aroma contents in cucumber juices, and their contents decreased with storage time. Peppermint and lemongrass extracts were significantly (p ≤ 0.05) increased the whiteness of J-PME, and J-LEE, respectively. The highest score of flavor and taste was observed in J-PME that scored 8.3 based on panelists'' reports followed by J-LEE. The PME was significantly maintained 91% of the odor and color of J-PME as compared to other juices.  相似文献   
20.
A new phytochemical study of Mortonia greggii (Celastraceae) afforded four friedelan derivatives (1-4), three lupanes (5-7), retusine (8), two esterified polyhydroxyagarofurans (9-10), mortonin C (11) and photomortonin C (12). The anti-inflammatory activity on carrageenan and 12-O-tetradecanoylphorbol-13-acetate induced models of inflammation, as well as the ability to inhibit the nitric oxide (NO) produced by lipopolysaccharide-stimulated mouse peritoneal macrophages were evaluated for the main metabolites. Our results showed that the friedelan dehydrocanophyllic acid methyl ester (1) exhibits an anti-inflammatory effect which could be related to an inhibition of prostaglandin and NO production. The activity of lupeol (5), 29-hydroxylupeol (6) and 29-hydroxylupenone (7) might be involved with the prostanoid synthesis. The presence of the hydroxy groups in 6 appears to be important for activity. The edema inhibition capacity of retusine (8) could be related to a reduction of the prostaglandin production. The agarofuran derivative 10 is an NO inhibitor whose activity is probably not involved in the synthesis of prostaglandins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号