首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   378篇
  免费   22篇
  2023年   6篇
  2022年   32篇
  2021年   23篇
  2020年   8篇
  2019年   18篇
  2018年   14篇
  2017年   14篇
  2016年   13篇
  2015年   17篇
  2014年   23篇
  2013年   25篇
  2012年   28篇
  2011年   26篇
  2010年   14篇
  2009年   9篇
  2008年   25篇
  2007年   16篇
  2006年   12篇
  2005年   11篇
  2004年   9篇
  2003年   12篇
  2002年   6篇
  2001年   3篇
  1999年   3篇
  1998年   6篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1951年   1篇
排序方式: 共有400条查询结果,搜索用时 15 毫秒
381.
Objectives:To investigate the effect of vagus nerve stimulation (VNS) on the bone mineral density (BMD) in epileptic patients.Methods:A prospective cohort study was conducted on individuals with refractory seizures who underwent VNS surgery between January 2012 and December 2018. BMD was measured preoperatively and between 6 months and one year after surgery.Results:Twenty-one patients (mean age (±SD)=23.6±12.3 years) were recruited for the implantation of a VNS device. The mean absolute increase in lumbar BMD in the 21 patients was 0.04±0.04 g/cm2 resulting in an overall percent increase from baseline of 4.7±6.1%. BMD increased by an amount ≥ the least significant change (LSC) for the lumbar spine in 13 patients (61.9%). The lumbar Z score also increased in these patients from -1.22±1.15 to -0.88±1.22, P=0.006). Pre and Post VNA femoral BMD was measured in only 11 patients and, of those 3 showed a significant increase in BMD, 1 a significant decrease and 7 no change.Conclusion:The implantation of a VNS was associated with an increase in lumbar BMD. This study could lead to a new application for VNS in the treatment of osteoporosis.  相似文献   
382.
Double-strand breaks and stalled replication forks are a significant threat to genomic stability that can lead to chromosomal rearrangements or cell death. The protein CtIP promotes DNA end resection, an early step in homologous recombination repair, and has been found to protect perturbed forks from excessive nucleolytic degradation. However, it remains unknown how CtIP’s function in fork protection is regulated. Here, we show that CtIP recruitment to sites of DNA damage and replication stress is impaired upon global inhibition of SUMOylation. We demonstrate that CtIP is a target for modification by SUMO-2 and that this occurs constitutively during S phase. The modification is dependent on the activities of cyclin-dependent kinases and the PI-3-kinase-related kinase ATR on CtIP’s carboxyl-terminal region, an interaction with the replication factor PCNA, and the E3 SUMO ligase PIAS4. We also identify residue K578 as a key residue that contributes to CtIP SUMOylation. Functionally, a CtIP mutant where K578 is substituted with a non-SUMOylatable arginine residue is defective in promoting DNA end resection, homologous recombination, and in protecting stalled replication forks from excessive nucleolytic degradation. Our results shed further light on the tightly coordinated regulation of CtIP by SUMOylation in the maintenance of genome stability.  相似文献   
383.
The spermicidal efficacy of synthetic peptides, dermaseptin (DS1) and (DS4), was studied under in vitro conditions using human spermatozoa. The data showed that sperm motility was inhibited with various concentrations of dermaseptins at different intervals ranging from 2 to 240 min. The effective 100% inhibitory concentration (EC100) of DS4 sperm immobilization assay was equal to 50 mg/ml at 30 min, while the EC 100 of DS1 was equal to 100 mg/ml. The presence of 0.1% of chelating agent, EDTA, reduced the EC100 of DS4 to 5 mg/ml, while less than a twofold enhancement in DS 1 activity was observed in combination with EDTA. The action of dermaseptins on sperm motility was observed to be dose-dependent. Addition of pentoxifylline, which is known to enhance sperm motility, and Ca2+, which is a key element for sperm movement, did not prevent the spermicidal action of dermaseptins.  相似文献   
384.
Here, we report for the first time developmental changes in spontaneous activity and in response properties of single nerve fibers from the macular chick lagena. Such aspects are important in order to get insight into the functional role of the lagena which remains undetermined. For this purpose, we used intracellular and extracellular single-unit recording techniques in an isolated inner ear preparation from the chicken at ages E15 and P1. At E15, afferent fibers displayed a low irregular spontaneous discharge rate (41 ± 14 spikes/s, CV = 1.17 ± 0.1), which was replaced by regular high frequency spontaneous activity at P1 (CV = 0.48 ± 0.8, 89 ± 27 spikes/s). During the developmental period including E15, the percentage of silent neurons was 60% while that of P1 was 40%. The synaptic activity was higher at E15 than at P1. The action potential waveform generated at E15 had small amplitude and derivative depolarization, and consequently, a large duration in correlation with respect to action potential waveform at P1 (respectively: 53 ± 2 vs. 65 ± 3 mV, 60 ± 11 vs. 109 ± 20 mV/ms, 3.6 ± 0.4 vs. 1.1 ± 0.12 ms). In addition, we recognized two response dynamics to the injection of current steps: phasic, or rapidly adapting neurons and tonic, or slowly adapting neurons. Our results indicate similar developmental processes for the lagena as described for the vestibular system in other species, in agreement with the known morphological characteristics of this otholitic end organ. The presence of more than one subtype of afferent neuron also correlates with previous reports on vestibular afferents with analogous electrophysiological properties, strongly suggesting the vestibular nature of the lagena.  相似文献   
385.
386.
387.
Summary The [3H] phlorizin-binding component of brush border vesicles was enrichedin situ by negative purification. Several procedures, known to effect selective solubilization of membrane components, were used separately or in combination to remove proteins unrelated to the binding. Deoxycholate ruptured the vesicles and released 67% of their protein, thereby increasing the specific [3H] phlorizin-binding activity of the pellet three-to fourfold. Extracting the deoxycholate-pellets with either NaI or alkaline solutions released up to 38% of the deoxycholate-insoluble protein without significantly affecting phlorizin binding. The polypeptide composition of the membranes at the different stages was analyzed by NaDodSO4-polyacrylamide gel electrophoresis. A number of polypeptides present in the original vesicles could be ruled out as essential components of the [3H] phlorizin binding entity.Intact and deoxycholate-treated vesicles were subjected to proteolytic attack. Papain liberated sucrase and isomaltase from intact vesicles, but affected neither other Coomassiestained bands nor phlorizin binding. Neither the protein composition nor the binding properties of sealed vesicles were influenced by trypsin or chymotrypsin. However, all the proteolytic enzymes tested on deoxycholate-treated membranes substantially reduced [3H] phlorizin binding and produced concomitantly the disappearance of several bands from the electrophoretic profile.Pretreatment of vesicles with papain, followed by deoxycholate extraction and incubation in alkaline media, increased the specific binding activity of the membranes up to ninefold by removing close to 90% of the protein. A limited number of polypeptides are suggested as possible candidates for the glycoside-binding site of intestinal brush borders.  相似文献   
388.
389.
Activation of the glucose transporter GLUT4 by insulin.   总被引:12,自引:0,他引:12  
The transport of glucose into cells and tissues is a highly regulated process, mediated by a family of facilitative glucose transporters (GLUTs). Insulin-stimulated glucose uptake is primarily mediated by the transporter isoform GLUT4, which is predominantly expressed in mature skeletal muscle and fat tissues. Our recent work suggests that two separate pathways are initiated in response to insulin: (i) to recruit transporters to the cell surface from intracellular pools and (ii) to increase the intrinsic activity of the transporters. These pathways are differentially inhibited by wortmannin, demonstrating that the two pathways do not operate in series. Conversely, inhibitors of p38 mitogen-activated protein kinase (MAPK) imply that p38 MAPK is involved only in the regulation of the pathway leading to the insulin-stimulated activation of GLUT4. This review discusses the evidence for the divergence of GLUT4 translocation and activity and proposed mechanisms for the regulation of GLUT4.  相似文献   
390.
Osteoblasts play an important role in bone regeneration and repair. The hypoxia condition in bone occurs when bone undergoes fracture, and this will trigger a series of biochemical and mechanical changes to enable bone repair. Hence, it is interesting to observe the metabolites and metabolism changes when osteoblasts are exposed to hypoxic condition. This study has looked into the response of human osteoblast hFOB 1.19 under normoxic and hypoxic conditions by observing the cell growth and utilization of metabolites via Phenotype MicroArrays™ under these two different oxygen concentrations. The cell growth of hFOB 1.19 under hypoxic condition showed better growth compared to hFOB 1.19 under normal condition. In this study, osteoblast used glycolysis as the main pathway to produce energy as hFOB 1.19 in both hypoxic and normoxic conditions showed cell growth in well containing dextrin, glycogen, maltotriose, D-maltose, D-glucose-6-phospate, D-glucose, D-mannose, D-Turanose, D-fructose-6-phosphate, D-galactose, uridine, adenosine, inosine and α-keto-glutaric acid. In hypoxia, the cells have utilized additional metabolites such as α-D-glucose-1-phosphate and D-fructose, indicating possible activation of glycogen synthesis and glycogenolysis to metabolize α-D-glucose-1-phosphate. Meanwhile, during normoxia, D-L-α-glycerol phosphate was used, and this implies that the osteoblast may use glycerol-3-phosphate shuttle and oxidative phosphorylation to metabolize glycerol-3-phosphate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号