首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2388篇
  免费   194篇
  国内免费   4篇
  2024年   4篇
  2023年   19篇
  2022年   62篇
  2021年   95篇
  2020年   94篇
  2019年   206篇
  2018年   139篇
  2017年   82篇
  2016年   108篇
  2015年   133篇
  2014年   122篇
  2013年   182篇
  2012年   224篇
  2011年   188篇
  2010年   102篇
  2009年   99篇
  2008年   123篇
  2007年   106篇
  2006年   98篇
  2005年   76篇
  2004年   66篇
  2003年   61篇
  2002年   45篇
  2001年   13篇
  2000年   13篇
  1999年   10篇
  1998年   10篇
  1997年   12篇
  1996年   3篇
  1995年   7篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1989年   3篇
  1988年   3篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1982年   3篇
  1979年   2篇
  1978年   5篇
  1977年   8篇
  1976年   3篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1971年   3篇
  1967年   2篇
  1966年   2篇
排序方式: 共有2586条查询结果,搜索用时 31 毫秒
141.
We report on the elucidation of two separate pathways of spore germination in a plant pathogenic fungus Colletotrichum gloeosporioides f. sp. aeschynomene. Conidia of the fungus can germinate either from one side or from both sides, depending on external conditions. In shake culture that includes an extract made up from fresh peas, the unicellular conidium divides and one of the two cells develops a germ tube. On a solid surface this germ tube differentiates an appressorium. In rich medium without pea extract, germination is highly similar to Aspergillus spore germination: the conidium swells, forms a single germ tube and then divides and forms a second germ tube. Conidia that germinate in a rich medium do not form appressoria even on a solid surface and are non-pathogenic. In rich medium, cAMP stimulates germination in rich liquid cultures and induces appressoria formation on a hard surface. In pea extract cAMP induces swelling and formation of irregular germ tubes and appressoria. Our results suggest that plant surface signals induce pathogenic-specific spore germination in a cAMP-independent manner. cAMP is required for saprophytic germination and for appressorium formation.  相似文献   
142.
143.
Mordhay Avron  Amir Shneyour 《BBA》1971,226(2):498-500
Adding plastocyanin to plastocyanin-depleted chloroplast particles, restored both their ability to catalyse the photoinduced electron transfer from ascorbate-DCIP to NADP, and to induce the photooxidation of cytochrome f. It is concluded, therefore, that plastocyanin mediates the photoinduced oxidation of cytochrome f, as previously suggested.  相似文献   
144.
Gal M  Katz T  Ovadia A  Yagil G 《Nucleic acids research》2003,31(13):3682-3685
A program to map the locations and frequencies of DNA tracts composed of only two bases ('Binary DNA') is described. The program, TRACTS (URL http://bioportal.weizmann.ac.il/tracts/tracts.html and/or http://bip.weizmann.ac.il/miwbin/servers/tracts) is of interest because long tracts composed of only two bases are highly over-represented in most genomes. In eukaryotes, oligopurine.oligopyrimidine tracts ('R.Y tracts') are found in the highest excess. In prokaryotes, W tracts predominate (A,T 'rich'). A pre-program, ANEX, parses database annotation files of GenBank and EMBL, to produce a convenient one-line list of every gene (exon, intron) in a genome. The main unit lists and analyzes tracts of the three possible binary pairs (R.Y, K.M and S;W). As an example, the results of R.Y tract mapping of mammalian gene p53 is described.  相似文献   
145.
Does the observation of well-timed movements imply the existence of some internal representation of time, such as a hypothetical neural clock? Here we report the results of experiments designed to investigate whether subjects form a correct adaptive representation of mechanical environments that change in a very predictable manner. In these experiments, subjects were asked to execute arm movements over a two-dimensional workspace while experiencing time-dependent disturbing forces. We provide a formal definition for time representation and conclude that our subjects didn't use time representation for motor adaptation under the tested conditions. Subjects performed arm-reaching movements in the following experiments: (1) six experiments in a sinusoidal time-varying force field; (2) six experiments in a simple sequence of alternating viscous force fields, in which the number of targets allowed for the approximation of the force by a complex state-dependent force field; and (3) six experiments in the same simple sequence of alternating viscous force fields, in which no state-dependent force field approximation was possible. We found that the subjects did not adapt to the time-varying force field and were unable to form an adequate representation of the simple sequence of force fields. In the latter case, whenever possible, they adapted to a single state-dependent field that produced forces similar to the two alternating fields. This state-dependent field produced the same forces as the applied sequence of fields only over the trajectories that subjects executed during the training phase. However, the state-dependent field was inadequate to produce the correct forces generated by the field sequence over a new set of trajectories.These results are not consistent with the hypothesis that subjects would develop a correct representation of time-dependent forces, at least under the tested circumstances. We speculate that the system responsible for adaptation of movements to external forces may be unable to employ temporal representation. While it is possible that such a representation may emerge in a more prolonged and/or intense training, our findings indicate a preference by the adaptive system to generalize based on representing dependence of external forces upon state rather than upon time.  相似文献   
146.
The X-ray crystallographic structure of KvAP, a voltage-gated bacterial K channel, was recently published. However, the position and the molecular movement of the voltage sensor, S4, are still controversial. For example, in the crystallographic structure, S4 is located far away (>30 A) from the pore domain, whereas electrostatic experiments have suggested that S4 is located close (<8 A) to the pore domain in open channels. To test the proposed location and motion of S4 relative to the pore domain, we induced disulphide bonds between pairs of introduced cysteines: one in S4 and one in the pore domain. Several residues in S4 formed a state-dependent disulphide bond with a residue in the pore domain. Our data suggest that S4 is located close to the pore domain in a neighboring subunit. Our data also place constraints on possible models for S4 movement and are not compatible with a recently proposed KvAP model.  相似文献   
147.
148.
Amir R  Devor M 《Biophysical journal》2003,84(4):2700-2708
The peculiar pseudounipolar geometry of primary sensory neurons can lead to ectopic generation of "extra spikes" in the region of the dorsal root ganglion potentially disrupting the fidelity of afferent signaling. We have used an explicit model of myelinated vertebrate sensory neurons to investigate the location and mechanism of extra spike formation, and its consequences for distortion of afferent impulse patterning. Extra spikes originate in the initial segment axon under conditions in which the soma spike becomes delayed and broadened. The broadened soma spike then re-excites membrane it has just passed over, initiating an extra spike which propagates outwards into the main conducting axon. Extra spike formation depends on cell geometry, electrical excitability, and the recent history of impulse activity. Extra spikes add to the impulse barrage traveling toward the spinal cord, but they also travel antidromically in the peripheral nerve colliding with and occluding normal orthodromic spikes. As a result there is no net increase in afferent spike number. However, extra spikes render firing more staccato by increasing the number of short and long interspike intervals in the train at the expense of intermediate intervals. There may also be more complex changes in the pattern of afferent spike trains, and hence in afferent signaling.  相似文献   
149.
Missense mutations in exon 5 of the LPL gene are the most common reported cause of LPL deficiency. Exon 5 is also the region with the strongest homology to pancreatic and hepatic lipase, and is conserved in LPL from different species. Mutant LPL proteins from post-heparin plasma from patients homozygous for missense mutations at amino acid positions 176, 188, 194, 205, and 207, and from COS cells transiently transfected with the corresponding cDNAs were quantified and characterized, in an attempt to determine which aspect of enzyme function was affected by each specific mutation. All but one of the mutant proteins were present, mainly as partially denatured LPL monomer, rendering further detailed assessment of their catalytic activity, affinity to heparin, and binding to lipoprotein particles difficult. However, the fresh unstable Gly(188)-->Glu LPL and the stable Ile(194)-->Thr LPL, although in native conformation, did not express lipase activity. It is proposed that many of the exon 5 mutant proteins are unable to achieve or maintain native dimer conformation, and that the Ile(194)-->Thr substitution interferes with access of lipid substrate to the catalytic pocket. These results stress the importance of conformational evaluation of mutant LPL. Absence of catalytic activity does not necessarily imply that the substituted amino acid plays a specific direct role in catalysis.  相似文献   
150.
Hacham Y  Avraham T  Amir R 《Plant physiology》2002,128(2):454-462
Cystathionine gamma-synthase (CGS) is a key enzyme of Met biosynthesis in bacteria and plants. Aligning the amino acid sequences revealed that the plant enzyme has an extended N-terminal region that is not found in the bacterial enzyme. However, this region is not essential for the catalytic activity of this enzyme, as deduced from the complementation test of an Escherichia coli CGS mutant. To determine the function of this N-terminal region, we overexpressed full-length Arabidopsis CGS and its truncated version that lacks the N-terminal region in transgenic tobacco (Nicotiana tabacum) plants. Transgenic plants expressing both types of CGS had a significant higher level of Met, S-methyl-Met, and Met content in their proteins. However, although plants expressing full-length CGS showed the same phenotype and developmental pattern as wild-type plants, those expressing the truncated CGS showed a severely abnormal phenotype. These abnormal plants also emitted high levels of Met catabolic products, dimethyl sulfide and carbon disulfide. The level of ethylene, the Met-derived hormone, was 40 times higher than in wild-type plants. Since the alien CGS was expressed at comparable levels in both types of transgenic plants, we further suggest that post-translational modification(s) occurs in this N-terminal region, which regulate CGS and/or Met metabolism. More specifically, since the absence of the N-terminal region leads to an impaired Met metabolism, the results further suggest that this region plays a role in protecting plants from a high level of Met catabolic products such as ethylene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号