全文获取类型
收费全文 | 2157篇 |
免费 | 172篇 |
国内免费 | 4篇 |
专业分类
2333篇 |
出版年
2024年 | 5篇 |
2023年 | 18篇 |
2022年 | 65篇 |
2021年 | 86篇 |
2020年 | 85篇 |
2019年 | 176篇 |
2018年 | 123篇 |
2017年 | 66篇 |
2016年 | 98篇 |
2015年 | 125篇 |
2014年 | 103篇 |
2013年 | 160篇 |
2012年 | 200篇 |
2011年 | 171篇 |
2010年 | 95篇 |
2009年 | 95篇 |
2008年 | 113篇 |
2007年 | 95篇 |
2006年 | 90篇 |
2005年 | 70篇 |
2004年 | 57篇 |
2003年 | 57篇 |
2002年 | 42篇 |
2001年 | 10篇 |
2000年 | 11篇 |
1999年 | 8篇 |
1998年 | 9篇 |
1997年 | 11篇 |
1995年 | 6篇 |
1994年 | 4篇 |
1993年 | 4篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1988年 | 3篇 |
1987年 | 7篇 |
1986年 | 5篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1982年 | 3篇 |
1981年 | 2篇 |
1979年 | 2篇 |
1978年 | 5篇 |
1977年 | 8篇 |
1976年 | 3篇 |
1974年 | 3篇 |
1973年 | 5篇 |
1972年 | 3篇 |
1971年 | 3篇 |
1967年 | 2篇 |
1966年 | 2篇 |
排序方式: 共有2333条查询结果,搜索用时 15 毫秒
81.
Amir Malaki Nik Marcela Alexander Vaino Poysa Lorna Woodrow Milena Corredig 《Food biophysics》2011,6(1):26-36
The effect of soy protein subunit composition on the acid-induced aggregation of soymilk was investigated by preparing soymilk
from different soybean lines lacking specific glycinin and β-conglycinin subunits. Acid gelation was induced by glucono-δ-lactone
(GDL) and analysis was done using diffusing wave spectroscopy and rheology. Aggregation occurred near pH 5.8 and the increase
in radius corresponded to an increase in the elastic modulus measured by small deformation rheology. Diffusing wave spectroscopy
was also employed to follow acid gelation, and data indicated that particle interactions start to occur at a higher pH than
the pH of onset of gelation (corresponding to the start of the rapid increase in elastic modulus). The protein subunit composition
significantly affected the development of structure during acidification. The onset of aggregation occurred at a higher pH
for soymilk samples containing group IIb (the acidic subunit A3) of glycinin, than for samples prepared from Harovinton (a commercial variety containing all subunits) or from genotypes
null in glycinin. The gels made from lines containing group I (A1, A2) and group IIb (A3) of glycinin resulted in stiffer acid gels compared to the lines containing only β-conglycinin. These results confirmed that
the ratio of glycinin/β-conglycinin has a significant effect on gel structure, with an increase in glycinin causing an increase
in gel stiffness. The type of glycinin subunits also affected the aggregation behavior of soymilk. 相似文献
82.
A kinetic study was made of the relationship between respiration rate, sugar content and ATP levels, in fresh and aged potato tubers stored at 4°. The ATP content in tubers rose rapidly immediately after the chilling stress, while respiration rate decreased below the initial rate and sugar accumulation was not detected. After 4 days of storage, the ATP level declined and the sugars started to accumulate. The typical increase in respiration rate that usually follows chilling stress, appeared only in fresh tubers (at about the 6th day of storage). In dinitrophenol-treated tubers, the ATP level remained below the initial level and sugar accumulation was blocked completely. The evidence presented suggests that ATP elevation is not generated by the respiration burst. 相似文献
83.
Ira Marton Amir Zuker Elena Shklarman Vardit Zeevi Andrey Tovkach Suzy Roffe Marianna Ovadis Tzvi Tzfira Alexander Vainstein 《Plant physiology》2010,154(3):1079-1087
Zinc finger nucleases (ZFNs) are a powerful tool for genome editing in eukaryotic cells. ZFNs have been used for targeted mutagenesis in model and crop species. In animal and human cells, transient ZFN expression is often achieved by direct gene transfer into the target cells. Stable transformation, however, is the preferred method for gene expression in plant species, and ZFN-expressing transgenic plants have been used for recovery of mutants that are likely to be classified as transgenic due to the use of direct gene-transfer methods into the target cells. Here we present an alternative, nontransgenic approach for ZFN delivery and production of mutant plants using a novel Tobacco rattle virus (TRV)-based expression system for indirect transient delivery of ZFNs into a variety of tissues and cells of intact plants. TRV systemically infected its hosts and virus ZFN-mediated targeted mutagenesis could be clearly observed in newly developed infected tissues as measured by activation of a mutated reporter transgene in tobacco (Nicotiana tabacum) and petunia (Petunia hybrida) plants. The ability of TRV to move to developing buds and regenerating tissues enabled recovery of mutated tobacco and petunia plants. Sequence analysis and transmission of the mutations to the next generation confirmed the stability of the ZFN-induced genetic changes. Because TRV is an RNA virus that can infect a wide range of plant species, it provides a viable alternative to the production of ZFN-mediated mutants while avoiding the use of direct plant-transformation methods.Methods for genome editing in plant cells have fallen behind the remarkable progress made in whole-genome sequencing projects. The availability of reliable and efficient methods for genome editing would foster gene discovery and functional gene analyses in model plants and the introduction of novel traits in agriculturally important species (Puchta, 2002; Hanin and Paszkowski, 2003; Reiss, 2003; Porteus, 2009). Genome editing in various species is typically achieved by integrating foreign DNA molecules into the target genome by homologous recombination (HR). Genome editing by HR is routine in yeast (Saccharomyces cerevisiae) cells (Scherer and Davis, 1979) and has been adapted for other species, including Drosophila, human cell lines, various fungal species, and mouse embryonic stem cells (Baribault and Kemler, 1989; Venken and Bellen, 2005; Porteus, 2007; Hall et al., 2009; Laible and Alonso-González, 2009; Tenzen et al., 2009). In plants, however, foreign DNA molecules, which are typically delivered by direct gene-transfer methods (e.g. Agrobacterium and microbombardment of plasmid DNA), often integrate into the target cell genome via nonhomologous end joining (NHEJ) and not HR (Ray and Langer, 2002; Britt and May, 2003).Various methods have been developed to indentify and select for rare site-specific foreign DNA integration events or to enhance the rate of HR-mediated DNA integration in plant cells. Novel T-DNA molecules designed to support strong positive- and negative-selection schemes (e.g. Thykjaer et al., 1997; Terada et al., 2002), altering the plant DNA-repair machinery by expressing yeast chromatin remodeling protein (Shaked et al., 2005), and PCR screening of large numbers of transgenic plants (Kempin et al., 1997; Hanin et al., 2001) are just a few of the experimental approaches used to achieve HR-mediated gene targeting in plant species. While successful, these approaches, and others, have resulted in only a limited number of reports describing the successful implementation of HR-mediated gene targeting of native and transgenic sequences in plant cells (for review, see Puchta, 2002; Hanin and Paszkowski, 2003; Reiss, 2003; Porteus, 2009; Weinthal et al., 2010).HR-mediated gene targeting can potentially be enhanced by the induction of genomic double-strand breaks (DSBs). In their pioneering studies, Puchta et al. (1993, 1996) showed that DSB induction by the naturally occurring rare-cutting restriction enzyme I-SceI leads to enhanced HR-mediated DNA repair in plants. Expression of I-SceI and another rare-cutting restriction enzyme (I-CeuI) also led to efficient NHEJ-mediated site-specific mutagenesis and integration of foreign DNA molecules in plants (Salomon and Puchta, 1998; Chilton and Que, 2003; Tzfira et al., 2003). Naturally occurring rare-cutting restriction enzymes thus hold great promise as a tool for genome editing in plant cells (Carroll, 2004; Pâques and Duchateau, 2007). However, their wide application is hindered by the tedious and next to impossible reengineering of such enzymes for novel DNA-target specificities (Pâques and Duchateau, 2007).A viable alternative to the use of rare-cutting restriction enzymes is the zinc finger nucleases (ZFNs), which have been used for genome editing in a wide range of eukaryotic species, including plants (e.g. Bibikova et al., 2001; Porteus and Baltimore, 2003; Lloyd et al., 2005; Urnov et al., 2005; Wright et al., 2005; Beumer et al., 2006; Moehle et al., 2007; Santiago et al., 2008; Shukla et al., 2009; Tovkach et al., 2009; Townsend et al., 2009; Osakabe et al., 2010; Petolino et al., 2010; Zhang et al., 2010). Here too, ZFNs have been used to enhance DNA integration via HR (e.g. Shukla et al., 2009; Townsend et al., 2009) and as an efficient tool for the induction of site-specific mutagenesis (e.g. Lloyd et al., 2005; Zhang et al., 2010) in plant species. The latter is more efficient and simpler to implement in plants as it does not require codelivery of both ZFN-expressing and donor DNA molecules and it relies on NHEJ—the dominant DNA-repair machinery in most plant species (Ray and Langer, 2002; Britt and May, 2003).ZFNs are artificial restriction enzymes composed of a fusion between an artificial Cys2His2 zinc-finger protein DNA-binding domain and the cleavage domain of the FokI endonuclease. The DNA-binding domain of ZFNs can be engineered to recognize a variety of DNA sequences (for review, see Durai et al., 2005; Porteus and Carroll, 2005; Carroll et al., 2006). The FokI endonuclease domain functions as a dimer, and digestion of the target DNA requires proper alignment of two ZFN monomers at the target site (Durai et al., 2005; Porteus and Carroll, 2005; Carroll et al., 2006). Efficient and coordinated expression of both monomers is thus required for the production of DSBs in living cells. Transient ZFN expression, by direct gene delivery, is the method of choice for targeted mutagenesis in human and animal cells (e.g. Urnov et al., 2005; Beumer et al., 2006; Meng et al., 2008). Among the different methods used for high and efficient transient ZFN delivery in animal and human cell lines are plasmid injection (Morton et al., 2006; Foley et al., 2009), direct plasmid transfer (Urnov et al., 2005), the use of integrase-defective lentiviral vectors (Lombardo et al., 2007), and mRNA injection (Takasu et al., 2010).In plant species, however, efficient and strong gene expression is often achieved by stable gene transformation. Both transient and stable ZFN expression have been used in gene-targeting experiments in plants (Lloyd et al., 2005; Wright et al., 2005; Maeder et al., 2008; Cai et al., 2009; de Pater et al., 2009; Shukla et al., 2009; Tovkach et al., 2009; Townsend et al., 2009; Osakabe et al., 2010; Petolino et al., 2010; Zhang et al., 2010). In all cases, direct gene-transformation methods, using polyethylene glycol, silicon carbide whiskers, or Agrobacterium, were deployed. Thus, while mutant plants and tissues could be recovered, potentially without any detectable traces of foreign DNA, such plants were generated using a transgenic approach and are therefore still likely to be classified as transgenic. Furthermore, the recovery of mutants in many cases is also dependent on the ability to regenerate plants from protoplasts, a procedure that has only been successfully applied in a limited number of plant species. Therefore, while ZFN technology is a powerful tool for site-specific mutagenesis, its wider implementation for plant improvement may be somewhat limited, both by its restriction to certain plant species and by legislative restrictions imposed on transgenic plants.Here we describe an alternative to direct gene transfer for ZFN delivery and for the production of mutated plants. Our approach is based on the use of a novel Tobacco rattle virus (TRV)-based expression system, which is capable of systemically infecting its host and spreading into a variety of tissues and cells of intact plants, including developing buds and regenerating tissues. We traced the indirect ZFN delivery in infected plants by activation of a mutated reporter gene and we demonstrate that this approach can be used to recover mutated plants. 相似文献
84.
Josep Bassaganya-Riera Sarah Misyak Amir J. Guri Raquel Hontecillas 《Cellular immunology》2009,258(2):138-5418
Macrophage infiltration into adipose tissue is a hallmark of obesity. We recently reported two phenotypically distinct subsets of adipose tissue macrophages (ATM) based on the surface expression of the glycoprotein F4/80 and responsiveness to treatment with a peroxisome proliferator-activated receptor (PPAR) γ agonist. Hence, we hypothesized that F4/80hi and F4/80lo ATM differentially express PPAR γ. This study phenotypically and functionally characterizes F4/80hi and F4/80lo ATM subsets during obesity. Changes in gene expression were also examined on sorted F4/80lo and F4/80hi ATM by quantitative real-time RT-PCR. We show that while F4/80lo macrophages predominate in adipose tissue of lean mice, obesity causes accumulation of both F4/80lo and F4/80hi ATM. Moreover, accumulation of F4/80hi ATM in adipose tissue is associated with impaired glucose tolerance. Phenotypically, F4/80hi ATM express greater amounts of CD11c, MHC II, CD49b, and CX3CR1 and produce more TNF-α, MCP-1, and IL-10 than F4/80lo ATM. Gene expression analyses of the sorted populations revealed that only the F4/80lo population produced IL-4, whereas the F4/80hi ATM expressed greater amounts of PPAR γ, δ, CD36 and toll-like receptor-4. In addition, the deficiency of PPAR γ in immune cells favors expression of M1 and impairs M2 macrophage marker expression in adipose tissue. Thus, PPAR γ is differentially expressed in F4/80hi versus F4/80low ATM subsets and its deficiency favors a predominance of M1 markers in WAT. 相似文献
85.
Therapeutic efficacy of melanoma-reactive TIL injected in stage III melanoma patients 总被引:4,自引:0,他引:4
Labarrière N Pandolfino MC Gervois N Khammari A Tessier MH Dréno B Jotereau F 《Cancer immunology, immunotherapy : CII》2002,51(10):532-538
Adoptive therapy for cancer using tumor-infiltrating lymphocytes (TIL) has mainly been investigated in cancer patients with advanced stage disease. The limited clinical success has not been encouraging, although this might be explained by poor TIL specificity and/or high tumor burden. To re-evaluate the effectiveness of adoptive therapy, we analyzed the capacity of tumor-reactive TIL injection in preventing the further development of disease in stage III melanoma patients after complete tumor resection. A phase II/III randomized trial was performed on 88 melanoma patients, who received autologous TIL plus interleukin-2 (IL-2) or IL-2 only. The duration of relapse-free survival was analyzed, taking into account the immunological specificity of injected TIL and the number of metastatic lymph nodes removed before treatment. Kaplan-Meyer analysis revealed that the injection of tumor-reactive TIL was statistically correlated with prolonged relapse-free survival in patients with only one metastatic lymph node. Therefore, improved clinical outcome could be obtained after adoptive therapy by selecting appropriate groups of patients and monitoring the specificity of the injected TIL populations. 相似文献
86.
Structural and functional consequences of missense mutations in exon 5 of the lipoprotein lipase gene 总被引:2,自引:0,他引:2
Peterson J Ayyobi AF Ma Y Henderson H Reina M Deeb SS Santamarina-Fojo S Hayden MR Brunzell JD 《Journal of lipid research》2002,43(3):398-406
Missense mutations in exon 5 of the LPL gene are the most common reported cause of LPL deficiency. Exon 5 is also the region with the strongest homology to pancreatic and hepatic lipase, and is conserved in LPL from different species. Mutant LPL proteins from post-heparin plasma from patients homozygous for missense mutations at amino acid positions 176, 188, 194, 205, and 207, and from COS cells transiently transfected with the corresponding cDNAs were quantified and characterized, in an attempt to determine which aspect of enzyme function was affected by each specific mutation. All but one of the mutant proteins were present, mainly as partially denatured LPL monomer, rendering further detailed assessment of their catalytic activity, affinity to heparin, and binding to lipoprotein particles difficult. However, the fresh unstable Gly(188)-->Glu LPL and the stable Ile(194)-->Thr LPL, although in native conformation, did not express lipase activity. It is proposed that many of the exon 5 mutant proteins are unable to achieve or maintain native dimer conformation, and that the Ile(194)-->Thr substitution interferes with access of lipid substrate to the catalytic pocket. These results stress the importance of conformational evaluation of mutant LPL. Absence of catalytic activity does not necessarily imply that the substituted amino acid plays a specific direct role in catalysis. 相似文献
87.
Host Physiology and Pathogenic Variation of Cochliobolus heterostrophus Strains with Mutations in the G Protein Alpha Subunit, CGA1 下载免费PDF全文
Ofir Degani Rudy Maor Ruthi Hadar Amir Sharon Benjamin A. Horwitz 《Applied microbiology》2004,70(8):5005-5009
Conserved eukaryotic signaling proteins participate in development and disease in plant-pathogenic fungi. Strains with mutations in CGA1, a heterotrimeric G protein G alpha subunit gene of the maize pathogen Cochliobolus heterostrophus, are defective in several developmental pathways. Conidia from CGA1 mutants germinate as abnormal, straight-growing germ tubes that form few appressoria, and the mutants are female sterile. Nevertheless, these mutants can cause normal lesions on plants, unlike other filamentous fungal plant pathogens in which functional homologues of CGA1 are required for full virulence. Δcga1 mutants of C. heterostrophus were less infective of several maize varieties under most conditions, but not all, as virulence was nearly normal on detached leaves. This difference could be related to the rapid senescence of detached leaves, since delaying senescence with cytokinin also had differential effects on the virulence of the wild type and the Δcga1 mutant. In particular, detached leaves may provide a more readily available nutrient source than attached leaves. Decreased fitness of Δcga1 as a pathogen may reflect conditions under which full virulence requires signal transduction through CGA1-mediated pathways. The virulence of these signal transduction mutants is thus affected differentially by the physiological state of the host. 相似文献
88.
Amir Hameed Rakhshanda Bilal Farooq Latif Joyce Van Eck Georg Jander Shahid Mansoor 《Plant biotechnology reports》2018,12(3):175-185
Potato tubers must be cold-stored to extend their shelf life and maintain an uninterrupted supply chain for food processors. However, a side-effect of low-temperature storage is manifested in terms of cold-induced sweetening (CIS) of potato tubers, which reduces the processing quality and the commercial value of the end-products. RNA interference (RNAi) technology, whereby transgene-derived small interfering RNAs can trigger the homology-based knockdown of cognate host genes and can initiate gene silencing, has been successfully applied in crop improvement through targeted gene knockout in host plants. In the current study, transgenic potato plants (Solanum tuberosum cv. Désirée) were generated, expressing a 300 bp hairpin loop nucleotide sequence targeting the potato vacuolar invertase gene (VInv), under the constitutive Cauliflower mosaic virus 35S promoter. Tubers collected from transgenic lines showed a significant reduction in reducing sugar content after 180 days of cold storage, without showing any measurable off-target effects on plant morphology and tuberization compared to non-transformed control plants. The cold-stored tubers were further assayed for chip color, which showed a fairly light colored quality in the samples originating from RNAi lines. Together with similar effects seen in previously published experiments involving other potato varieties, the Désirée results described here establish the efficacy of using RNAi for the successful reduction of CIS in potato tubers. 相似文献
89.
Hao?Chen Ran?Gilad-Bachrach Kyoohyung?Han Zhicong?Huang Amir?Jalali Kim?LaineEmail author Kristin?Lauter 《BMC medical genomics》2018,11(4):81
Background
One of the tasks in the 2017 iDASH secure genome analysis competition was to enable training of logistic regression models over encrypted genomic data. More precisely, given a list of approximately 1500 patient records, each with 18 binary features containing information on specific mutations, the idea was for the data holder to encrypt the records using homomorphic encryption, and send them to an untrusted cloud for storage. The cloud could then homomorphically apply a training algorithm on the encrypted data to obtain an encrypted logistic regression model, which can be sent to the data holder for decryption. In this way, the data holder could successfully outsource the training process without revealing either her sensitive data, or the trained model, to the cloud.Methods
Our solution to this problem has several novelties: we use a multi-bit plaintext space in fully homomorphic encryption together with fixed point number encoding; we combine bootstrapping in fully homomorphic encryption with a scaling operation in fixed point arithmetic; we use a minimax polynomial approximation to the sigmoid function and the 1-bit gradient descent method to reduce the plaintext growth in the training process.Results
Our algorithm for training over encrypted data takes 0.4–3.2 hours per iteration of gradient descent.Conclusions
We demonstrate the feasibility but high computational cost of training over encrypted data. On the other hand, our method can guarantee the highest level of data privacy in critical applications.90.
Rodriguez-Porcel M Zhu XY Chade AR Amores-Arriaga B Caplice NM Ritman EL Lerman A Lerman LO 《American journal of physiology. Heart and circulatory physiology》2006,290(3):H978-H984
Advanced hypertension (HT), associated with left ventricular hypertrophy (LVH), impairs myocardial microvascular function and structure and leads to increased myocardial hypoxia and growth factor activation. However, the effect of HT on microvascular architecture and its relation to microvascular function, before the development of LVH (early HT), remains unclear. By way of method, pigs were studied after 12 wk of renovascular HT (n = 7) or control (n = 7) animals. Myocardial microvascular function (blood volume and blood flow at baseline and in response to adenosine) was assessed by using electron beam computed tomography (CT). Microvascular architecture was subsequently studied ex vivo using micro-CT, and microvessels (diameter, <500 microm) were counted in situ in three-dimensional images (40-microm on-a-side cubic voxels). Myocardial expression of vascular endothelial growth factor, basic fibroblast growth factor, and hypoxia-inducible factor-1alpha were also measured. By way of results, left ventricular muscle mass was similar between the groups. The blood volume response to intravenous adenosine was attenuated in HT animals compared with normal animals (+7.4 +/- 17.0 vs. +46.2 +/- 12.3% compared with baseline, P = 0.48 and P = 0.01, respectively). Microvascular spatial density in HT animals was significantly elevated compared with normal animals (246 +/- 26 vs. 125 +/- 20 vessels/cm2, P < 0.05) and correlated inversely with the blood volume response to adenosine. Growth factors expression was increased in HT animals compared with control animals. In conclusion, early HT elicits changes in myocardial microvascular architecture, which are associated with microvascular dysfunction and precede changes in muscle mass. These observations underscore the direct and early effects of HT on the myocardial vasculature. 相似文献