首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2358篇
  免费   188篇
  国内免费   4篇
  2024年   5篇
  2023年   21篇
  2022年   75篇
  2021年   97篇
  2020年   100篇
  2019年   190篇
  2018年   139篇
  2017年   77篇
  2016年   108篇
  2015年   131篇
  2014年   120篇
  2013年   182篇
  2012年   223篇
  2011年   185篇
  2010年   103篇
  2009年   102篇
  2008年   119篇
  2007年   98篇
  2006年   96篇
  2005年   71篇
  2004年   59篇
  2003年   59篇
  2002年   44篇
  2001年   11篇
  2000年   12篇
  1999年   9篇
  1998年   9篇
  1997年   12篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1989年   3篇
  1988年   3篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1978年   5篇
  1977年   8篇
  1976年   4篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1971年   3篇
  1967年   2篇
  1966年   2篇
排序方式: 共有2550条查询结果,搜索用时 15 毫秒
71.
72.
Numerous studies have confirmed that cancer stem cells (CSCs) are more resistant to chemotherapy; however, there is a paucity of data exploring the effect of long-term drug treatment on the CSC sub-population. The purpose of this study was to investigate whether long-term doxorubicin treatment could expand the neuroblastoma cells with CSC characteristics and histone acetylation could affect stemness gene expression during the development of drug resistance. Using n-myc amplified SK-N-Be(2)C and non-n-myc amplified SK-N-SH human neuroblastoma cells, our laboratory generated doxorubicin-resistant cell lines in parallel over 1 year; one cell line intermittently treated with the histone deacetylase inhibitor (HDACi) vorinostat and the other without exposure to HDACi. Cells'' sensitivity to chemotherapeutic drugs, the ability to form tumorspheres, and capacity for in vitro invasion were examined. Cell-surface markers and side populations (SPs) were analyzed using flow cytometry. Differentially expressed stemness genes were identified through whole genome analysis and confirmed with real-time PCR. Our results indicated that vorinostat increased the sensitivity of only SK-N-Be(2)C-resistant cells to chemotherapy, made cells lose the ability to form tumorspheres, and reduced in vitro invasion and the SP percentage. CD133 was not enriched in doxorubicin-resistant or vorinostat-treated doxorubicin-resistant cells. Nine stemness-linked genes (ABCB1, ABCC4, LMO2, SOX2, ERCC5, S100A10, IGFBP3, TCF3, and VIM) were downregulated in vorinostat-treated doxorubicin-resistant SK-N-Be(2)C cells relative to doxorubicin-resistant cells. A sub-population of cells with CSC characteristics is enriched during prolonged drug selection of n-myc amplified SK-N-Be(2)C neuroblastoma cells. Vorinostat treatment affects the reversal of drug resistance in SK-N-Be(2)C cells and may be associated with downregulation of stemness gene expression. This work may be valuable for clinicians to design treatment protocols specific for different neuroblastoma patients.  相似文献   
73.
74.
75.
Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.  相似文献   
76.
Tissue engineering, an immensely important field in contemporary clinical practices, aims at the repair or replacement of damaged tissues. The mathematical model proposed herein shows the distribution and growth of cells in their characteristic time in a 3D scaffold model. This study contributes to the progress of simulation techniques in static and dynamic cultures of bone tissue. Brinkman, nutrient transport, and cell growth equations are brought together to quantify the growth behavior of cells. However, when a static culture is being studied, the Brinkman equation is eliminated. The model was validated by experimental cell culture using 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay and scanning electron microscopy. Then, static and dynamic cultures were compared to assess the cell density and cell distribution in the scaffold. Cell counting after 21 days of cell culture showed that the number of cells increased 42‐fold in static and 53.5‐fold in dynamic cultures, which was in good agreement with our model estimations (37‐fold increase in the number of cells in static and 49‐fold increase in dynamic cultures). In conclusion, our mathematical model could predict cell distribution and growth in the scaffold.  相似文献   
77.
Understanding the physiological and genetic basis of growth and body size variation has wide‐ranging implications, from cancer and metabolic disease to the genetics of complex traits. We examined the evolution of body and wing size in high‐altitude Drosophila melanogaster from Ethiopia, flies with larger size than any previously known population. Specifically, we sought to identify life history characteristics and cellular mechanisms that may have facilitated size evolution. We found that the large‐bodied Ethiopian flies laid significantly fewer but larger eggs relative to lowland, smaller‐bodied Zambian flies. The highland flies were found to achieve larger size in a similar developmental period, potentially aided by a reproductive strategy favoring greater provisioning of fewer offspring. At the cellular level, cell proliferation was a strong contributor to wing size evolution, but both thorax and wing size increases involved important changes in cell size. Nuclear size measurements were consistent with elevated somatic ploidy as an important mechanism of body size evolution. We discuss the significance of these results for the genetic basis of evolutionary changes in body and wing size in Ethiopian D. melanogaster.  相似文献   
78.
79.
Ecosystem Services of Woody Crop Production Systems   总被引:1,自引:0,他引:1  
Short-rotation woody crops are an integral component of regional and national energy portfolios, as well as providing essential ecosystem services such as biomass supplies, carbon sinks, clean water, and healthy soils. We review recent USDA Forest Service Research and Development efforts from the USDA Biomass Research Centers on the provisioning of these ecosystem services from woody crop production systems. For biomass, we highlight productivity and yield potential, pest susceptibility, and bioenergy siting applications. We describe carbon storage in aboveground woody biomass and studies assessing the provision of clean and plentiful water. Soil protection and wildlife habitat are also mentioned, in the context of converting lands from traditional row-crop agriculture to woody production systems.  相似文献   
80.
The ε-amino group of lysine residues may be mono-, di- or tri-methylated by protein lysine methyltransferases. In the past few years it has been highly considered that methylation of both histone and non-histone proteins has fundamental role in development and progression of various human diseases. Thus, the establishment of tools to study lysine methylation that will distinguish between the different states of methylation is required to elucidate their cellular functions. The 3X malignant brain tumor domain (3XMBT) repeats of the Lethal(3)malignant brain tumor-like protein 1 (L3MBTL1) have been utilized in the past as an affinity reagent for the identification of mono- and di-methylated lysine residues on individual proteins and on a proteomic scale. Here, we have utilized the 3XMBT domain to develop an enzyme-linked immunosorbent assay (ELISA) that allows the high-throughput detection of 3XMBT binding to methylated lysines. We demonstrated that this system allows the detection of methylated peptides, methylated proteins and PKMT activity on both peptides and proteins. We also optimized the assay to detect 3XMBT binding in crude E. coli lysates which facilitated the high throughput screening of 3XMBT mutant libraries. We have utilized protein engineering tools and generated a double site saturation 3XMBT library of residues 361 and 411 that were shown before to be important for binding mono and di-methylated substrates and identified variants that can exclusively recognize only di-methylated peptides. Together, our results demonstrate a powerful new approach that will contribute to deeper understanding of lysine methylation biology and that can be utilized for the engineering of domains for specific binders of other post-translational modifications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号