首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  1998年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
11.
Leptospira interrogans is the foremost cause of human leptospirosis. Discovery of novel lead molecules for common drug targets of more than 250 Leptospira serovars is of significant research interest. Lipopolysaccharide (LPS) layer prevent entry of hydrophobic agents into the cell and protect structural integrity of the bacterium. KDO-8-phosphate synthase (KdsA) catalyzes the first step of KDO biosynthesis that leads to formation of inner core of LPS. KdsA was identified as a potential drug target against Leptospira interrogans through subtractive genomic approach, metabolic pathway analysis, and comparative analysis (Amineni et al., 2010). The present study rationalizes a systematic implementation of homology modeling, docking, and molecular dynamics simulations to discover potent KdsA inhibitors (Pradhan et al., 2013; Umamaheswari et al., 2010). A reliable tertiary structure of KdsA in complex with substrate PEP was constructed based on co-crystal structure of Aquifex aeolicus KdsA synthase with PEP using Modeller9v10. Geometry-based analog search for PEP was performed from LigandInfo database to generate an in house library of 352 ligands. The ligand data-set was docked into KdsA active site through three-stage docking technique (HTVS, SP, and XP) using Glidev5.7. Thirteen lead molecules were found to have better binding affinity compared to PEP (XP Gscore?=??7.38?kcal/mol; Figure 1). The best lead molecule (KdsA- lead1 docking complex) showed XP Gscore of ?10.26?kcal/mol and the binding interactions (Figure 2) were correlated favorably with PEP–KdsA interactions (Figure 1). Molecular dynamics simulations of KdsA– lead1 docking complex for 10?ns had revealed that the complex (Figure 3) remained stable in closer to physiological environmental condition. The predicted pharmacological properties of lead1 were well within the range of a drug molecule with good ADME profile, hence, would be intriguing towards development of potent inhibitor molecule against KdsA of Leptospira.  相似文献   
12.
Histone deacetylases (HDACs) are enzymes, which catalyze the removal of acetyl moiety from acetyl-lysine within the histone proteins and promote gene repression and silencing resulting in several types of cancer. HDACs are important therapeutic targets for the treatment of cancer and related diseases. Hydroxamic acid inhibitors show promising results in clinical trials against carcinogenesis. 120 hydroxamic acid derivatives were designed as inhibitors based on hydrophobic pocket and the Zn (II) catalytic site of HDAC8 active site using Structure Based Drug Design (SBDD) approach. High Throughput Virtual screening (HTVs) was used to filter the effective inhibitors. Induced Fit Docking (IFD) studies were carried out for the screening of eight inhibitors using Glide software. Hydrogen bond, hydrophobic interactions and octahedral coordination geometry with Zn (II) were observed in the IFD complexes. Prime MM-GBSA calculation was carried out for the binding free energy, to observe the stability of docked complexes. The Lipinski's rule of five was analyzed for ADME/Tox drug likeliness using Qikprop simulation. These inhibitors have good inhibitory properties as they have favorable docking score, energy, emodel, hydrogen bond and hydrophobic interactions, binding free energy and ADME/Tox. However, one compound (Cmp22) successively satisfied all the studies among the eight compounds screened and seems to be a promising potent inhibitor against HDAC8.  相似文献   
13.
Microbial fuel cell (MFC) is the most prominent research field due to its capability to generate electricity by utilizing the renewable sources. In the present study, Two MFC designs namely, H type-Microbial fuel cell (HT-MFC) and U type-Microbial fuel cell (UT-MFC) were constructed based on standardized H shaped anode and cathode compartment as well as U shaped anode and cathode compartments, respectively. In order to lower the cost for MFC construction, Pencil graphite lead was used as electrode and salt agar as Proton exchange membrane. Results inferred that newly constructed UT-MFC showed high electron production when compared to the HT-MFC. UT-MFC displayed an output of about 377?±?18.85 mV (millivolts); whereas HT-MFC rendered only 237?±?11.85 mV (millivolts) of power generation, which might be due to the low internal resistance. By increasing the number of cathode in UT-MFC, power production was increased upto 313?±?15.65 mV in Open circuit voltage (OCV). Electrogenic bacteria namely, Lysinibacillus macroides (Acc. No. KX011879) rendered enriched power generation. The attachment of bacteria as a biofilm on pencil graphite lead was analyzed using fluorescent microscope and Scanning Electron Microscope (SEM). Based on our findings, it was observed that UT-MFC has a tendency to produce high electron generation using pencil graphite lead as the electrode material.  相似文献   
14.
The interphase nucleus exists as a highly dynamic system, the physical properties of which have functional importance in gene regulation. Not only can gene expression be influenced by the local sequence context, but also by the architecture of the nucleus in three-dimensions (3D), and by the interactions between these levels via chromatin modifications. A challenging task is to resolve the complex interplay between sequence- and genome structure-based control mechanisms. Here, we created a collection of 277 Arabidopsis lines that allow the visual tracking of individual loci in living plants while comparing gene expression potential at these locations, via an identical reporter cassette. Our studies revealed regional gene silencing near a heterochromatin island, via DNA methylation, that is correlated with mobility constraint and nucleolar association. We also found an example of nucleolar association that does not correlate with gene suppression, suggesting that distinct mechanisms exist that can mediate interactions between chromatin and the nucleolus. These studies demonstrate the utility of this novel resource in unifying structural and functional studies towards a more comprehensive model of how global chromatin organization may coordinate gene expression over large scales.  相似文献   
15.
The Fourier transform Raman and Fourier transform infrared spectra 4-nitrobenzylchloride of (NBC) were recorded in the solid phase. The Fourier transform gas phase infrared spectrum of NBC was also recorded. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated by HF/DFT (B3LYP and BLYP) and SVWN methods with the 6-31G(d,p) basis set. The scaled theoretical wave numbers by B3LYP showed very good agreement with the experimental ones. A detailed interpretation of the infrared and Raman spectra of NBC is reported on the basis of the calculated potential energy distribution. The theoretical spectrograms for the IR spectrum of the title molecule have been constructed.  相似文献   
16.
Tianma (Gastrodia elata Blume) is a traditional Chinese medicine (TCM) often used for the treatment of headache, convulsions, hypertension and neurodegenerative diseases. Tianma also modulates the cleavage of the amyloid precursor protein App and cognitive functions in mice. The neuronal actions of tianma thus led us to investigate its specific effects on neuronal signalling. Accordingly, this pilot study was designed to examine the effects of tianma on the proteome metabolism in differentiated mouse neuronal N2a cells using an iTRAQ (isobaric tags for relative and absolute quantitation)-based proteomics research approach. We identified 2178 proteins, out of which 74 were found to be altered upon tianma treatment in differentiated mouse neuronal N2a cells. Based on the observed data obtained, we hypothesize that tianma could promote neuro-regenerative processes by inhibiting stress-related proteins and mobilizing neuroprotective genes such as Nxn, Dbnl, Mobkl3, Clic4, Mki67 and Bax with various regenerative modalities and capacities related to neuro-synaptic plasticity.  相似文献   
17.
The life-threatening infections caused by Leptospira serovars remain a global challenge since long time. Prevention of infection by controlling environmental factors being difficult to practice in developing countries, there is a need for designing potent anti-leptospirosis drugs. ATP-dependent MurD involved in biosynthesis of peptidoglycan was identified as common drug target among pathogenic Leptospira serovars through subtractive genomic approach. Peptidoglycan biosynthesis pathway being unique to bacteria and absent in host represents promising target for antimicrobial drug discovery. Thus, MurD 3D models were generated using crystal structures of 1EEH and 2JFF as templates in Modeller9v7. Structural refinement and energy minimization of the model was carried out in Maestro 9.0 applying OPLS-AA 2001 force field and was evaluated through Procheck, ProSA, PROQ, and Profile 3D. The active site residues were confirmed from the models in complex with substrate and inhibitor. Four published MurD inhibitors (two phosphinics, one sulfonamide, and one benzene 1,3-dicarbixylic acid derivative) were queried against more than one million entries of Ligand.Info Meta-Database to generate in-house library of 1,496 MurD inhibitor analogs. Our approach of virtual screening of the best-ranked compounds with pharmacokinetics property prediction has provided 17 novel MurD inhibitors for developing anti-leptospirosis drug targeting peptidoglycan biosynthesis pathway.  相似文献   
18.
Marine ascidians are considered as one of the richest sources of bioactive compounds. The extraction and utilization of marine peptides have been attracted much attention owing to their potential health benefits. Most of the bioactive compounds from marine ascidians are already in different phases of the clinical and preclinical pipeline. They can be used in different functional and nutraceutical values due to their antineoplastic, antihypertensive, antioxidant, and antimicrobial properties. The screening in vivo and in vitro bioassays are coupled to the purification process for the exploration of its biological interest which is of great value. The growing significance to study marine natural products results from the discovery of novel pharmacological tools including potent anticancer drugs and other drugs are in clinical/pre-clinical trials. The present review highlights the recent research progress in marine ascidians’ peptides and its prospects for the future pharmaceutical development.  相似文献   
19.
A new species of Sporobolus, S. hajrae , from coastal Tamil Nadu in southern India is described and illustrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号