首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   38篇
  国内免费   1篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   10篇
  2020年   14篇
  2019年   18篇
  2018年   15篇
  2017年   11篇
  2016年   10篇
  2015年   16篇
  2014年   19篇
  2013年   18篇
  2012年   20篇
  2011年   12篇
  2010年   5篇
  2009年   8篇
  2008年   9篇
  2007年   20篇
  2006年   16篇
  2005年   15篇
  2004年   10篇
  2003年   10篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
排序方式: 共有284条查询结果,搜索用时 15 毫秒
31.
Intermittent fasting (IF) has recently gained popularity, and has been used for centuries in many religious practices. The Ramadan fasting is a mandatory form of IF practiced by millions of healthy adult Muslims globally for a whole lunar month every year. In Islam, the “Sunna” also encourages Muslims to practice IF all along the year (e.g.; two days a week). The 2019-Coronavirus disease (COVID-19) pandemic in the context of Ramadan has raised the question whether fasting is safe practice during the COVID-19 pandemic health crisis, and what would be the healthy lifestyle behaviors while fasting that would minimize the risk of infection. As COVID-19 lacks a specific therapy, IF and physical activity could help promote human immunity and be part of holistic preventive strategy against COVID-19. In this commentary, the authors focus on this dilemma and provide recommendations to the fasting communities for safely practicing physical activity in time of COVID-19 pandemic.  相似文献   
32.
The high‐capacity cathode material V2O5·n H2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and poor electronic and ionic conductivities greatly handicap its application. Here, in cell tests, self‐assembly V2O5·n H2O nanoflakes shows excellent electrochemical performance with either monovalent or multivalent cation intercalation. They are directly grown on a 3D conductive stainless steel mesh substrate via a simple and green hydrothermal method. Well‐layered nanoflakes are obtained after heat treatment at 300 °C (V2O5·0.3H2O). Nanoflakes with ultrathin flower petals deliver a stable capacity of 250 mA h g?1 in a Li‐ion cell, 110 mA h g?1 in a Na‐ion cell, and 80 mA h g?1 in an Al‐ion cell in their respective potential ranges (2.0–4.0 V for Li and Na‐ion batteries and 0.1–2.5 V for Al‐ion battery) after 100 cycles.  相似文献   
33.
Recent results suggest that cytoplasmic mRNAs can form translationally repressed messenger ribonucleoprotein particles (mRNPs) capable of decapping and degradation, or accumulation into cytoplasmic processing bodies (P-bodies), which can function as sites of mRNA storage. The proteins that function in transitions between the translationally repressed mRNPs that accumulate in P-bodies and mRNPs engaged in translation are largely unknown. Herein, we demonstrate that the yeast translation initiation factor Ded1p can localize to P-bodies. Moreover, depletion of Ded1p leads to defects in P-body formation. Overexpression of Ded1p results in increased size and number of P-bodies and inhibition of growth in a manner partially suppressed by loss of Pat1p, Dhh1p, or Lsm1p. Mutations that inactivate the ATPase activity of Ded1p increase the overexpression growth inhibition of Ded1p and prevent Ded1p from localizing in P-bodies. Combined with earlier work showing Ded1p can have a positive effect on translation, these results suggest that Ded1p is a bifunctional protein that can affect both translation initiation and P-body formation.  相似文献   
34.
Adeno-associated viral vectors have emerged as one of the most studied vectors for gene therapy. Numerous production methods have been described, each with its advantages and disadvantages. A challenge in assessing the current state of the art exists in comparing yields from one production system to the next due to the wide variety of quantification techniques. In this review, AAV vector production methods are summarized and the yields of the different processes are standardized to the number of harvested cells. Titers are further streamlined into five categories: transduction units, enhanced transduction units, infectious particles, DNase-resistant particles and total particles, and the importance of each type of measure is discussed.  相似文献   
35.
Conversion of local structural state of a protein from an α-helix to a β-strand is usually associated with a major change in the tertiary structure. Similar changes were observed during the self assembly of amyloidogenic proteins to form fibrils, which are implicated in severe diseases conditions, e.g., Alzheimer disease. Studies have emphasized that certain protein sequence fragments known as chameleon sequences do not have a strong preference for either helical or the extended conformations. Surprisingly, the information on the local sequence neighborhood can be used to predict their secondary at a high accuracy level. Here we report a large scale-analysis of chameleon sequences to estimate their propensities to be associated with different local structural states such as α -helices, β-strands and coils. With the help of the propensity information derived from the amino acid composition, we underline their complexity, as more than one quarter of them prefers coil state over to the regular secondary structures. About half of them show preference for both α-helix and β-sheet conformations and either of these two states is favored by the rest.  相似文献   
36.
We assessed the impact of subcellular targeting on the heterologous expression of a clinically useful protease inhibitor, bovine aprotinin, in leaves of potato, Solanum tuberosum. Transgenic potato lines targeting aprotinin to the cytosol, the ER or the apoplast were first generated, and then assessed for their ability to accumulate the recombinant protein. On‐chip detection and quantitation of aprotinin variants by SELDI TOF MS showed the inhibitor to be absent in the cytosol, but present under different forms in the ER and the apoplast. No visible phenotypic effects of aprotinin were observed for the transgenic lines, but aprotinin retention in the ER was associated with a significant decrease of leaf soluble protein content. A 2‐D gel assessment of control and transgenic lines revealed a possible link between this altered protein content and the down‐regulation of proteins implicated in protein synthesis and maturation. These observations, supported by complementary 2‐DE analyses with potato lines targeting aprotinin to the apoplast, suggest an aprotinin‐mediated feedback in planta negatively altering protein anabolism. From a practical viewpoint, these data illustrate the importance of taking into account not only the characteristics of recombinant proteins expressed in heterologous environments, but also their possible effects on protein accumulation in the host plant factory.  相似文献   
37.
Analytical technology based on sensors is an extremely broad field which impacts on many major industrial sectors such as the pharmaceutical, healthcare, food, and agriculture industries as well as environmental monitoring. This review will highlight the research carried out during the last 5 years on biosensors that are based on enzyme inhibition for determination of pollutants and toxic compounds in a wide range of samples. Here the different enzymes implicated in the inhibition, different transducers forming the sensing devices, and the different contaminants analyzed are considered. The general application of the various biosensors developed, with emphasis on food and environmental applications, is reviewed as well as the general approaches that have been used for enzyme immobilization, the enzyme catalysis, and the inhibition mechanism.  相似文献   
38.
Integrins are essential protagonists of the complex multi-step process of angiogenesis that has now become a major target for the development of anticancer therapies. We recently reported and characterized that MVL-PLA2, a novel phospholipase A2 from Macrovipera lebetina venom, exhibited anti-integrin activity. In this study, we show that MVL-PLA2 also displays potent anti-angiogenic properties. This phospholipase A2 inhibited adhesion and migration of human microvascular-endothelial cells (HMEC-1) in a dose-dependent manner without being cytotoxic. Using Matrigel™ and chick chorioallantoic membrane assays, we demonstrated that MVL-PLA2, as well as its catalytically inactivated form, significantly inhibited angiogenesis both in vitro and in vivo. We have also found that the actin cytoskeleton and the distribution of αvβ3 integrin, a critical regulator of angiogenesis and a major component of focal adhesions, were disturbed after MVL-PLA2 treatment. In order to further investigate the mechanism of action of this protein on endothelial cells, we analyzed the dynamic instability behavior of microtubules in living endothelial cells. Interestingly, we showed that MVL-PLA2 significantly increased microtubule dynamicity in HMEC-1 cells by 40%. We propose that the enhancement of microtubule dynamics may explain the alterations in the formation of focal adhesions, leading to inhibition of cell adhesion and migration.  相似文献   
39.
Adenovirus production is currently operated at low cell density because infection at high cell densities still results in reduced cell‐specific productivity. To better understand nutrient limitation and inhibitory metabolites causing the reduction of specific yields at high cell densities, adenovirus production in HEK 293 cultures using NSFM 13 and CD 293 media were evaluated. For cultures using NSFM 13 medium, the cell‐specific productivity decreased from 3,400 to 150 vp/cell (or 96% reduction) when the cell density at infection was increased from 1 to 3 × 106 cells/mL. In comparison, only 50% of reduction in the cell‐specific productivity was observed under the same conditions for cultures using CD 293 medium. The effect of medium osmolality was found critical on viral production. Media were adjusted to an optimal osmolality of 290 mOsm/kg to facilitate comparison. Amino acids were not critical limiting factors. Potential limiting nutrients including vitamins, energy metabolites, bases and nucleotides, or inhibitory metabolites (lactate and ammonia) were supplemented to infected cultures to further investigate their effect on the adenovirus production. Accumulation of lactate and ammonia in a culture infected at 3 × 106 cells/mL contributed to about 20% reduction of the adenovirus production yield, whereas nutrient limitation appeared primarily responsible for the decline in the viral production when NSFM 13 medium was used. Overall, the results indicate that multiple factors contribute to limiting the specific production yield at cell densities beyond 1 × 106 cells/mL and underline the need to further investigate and develop media for better adenoviral vector productions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号