首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1466篇
  免费   100篇
  国内免费   4篇
  1570篇
  2024年   5篇
  2023年   15篇
  2022年   41篇
  2021年   70篇
  2020年   49篇
  2019年   77篇
  2018年   60篇
  2017年   41篇
  2016年   57篇
  2015年   69篇
  2014年   74篇
  2013年   98篇
  2012年   127篇
  2011年   108篇
  2010年   65篇
  2009年   40篇
  2008年   58篇
  2007年   67篇
  2006年   77篇
  2005年   48篇
  2004年   42篇
  2003年   30篇
  2002年   30篇
  2001年   13篇
  2000年   15篇
  1999年   18篇
  1998年   5篇
  1997年   5篇
  1996年   7篇
  1994年   5篇
  1993年   4篇
  1992年   12篇
  1991年   6篇
  1990年   5篇
  1989年   8篇
  1988年   13篇
  1987年   8篇
  1986年   4篇
  1985年   6篇
  1984年   11篇
  1983年   10篇
  1982年   7篇
  1979年   4篇
  1977年   3篇
  1974年   4篇
  1973年   8篇
  1972年   4篇
  1969年   9篇
  1968年   4篇
  1967年   4篇
排序方式: 共有1570条查询结果,搜索用时 0 毫秒
91.
Electricity generation from microbial fuel cells which treat food processing wastewater was investigated in this study. Anaerobic anode and aerobic cathode chambers were separated by a proton exchange membrane in a two-compartment MFC reactor. Buffer solutions and food industry wastewater were used as electrolytes in the anode and cathode chambers, respectively. The produced voltage and current intensity were measured using a digital multimeter. Effluents from the anode compartment were tested for COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity. The maximum current density and power production were measured 527 mA/m2 and 230 mW/m2 in the anode area, respectively, at operation organic loading (OLR) of 0.364 g COD/l.d. At OLR of 0.182 g COD/l.d, maximum voltage and columbic efficiency production were recorded 0.475 V and 21%, respectively. Maximum removal efficiency of COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity were 86, 79, 73, 18, 68, 62, 30 and 58%, respectively. The results indicated that catalysts and mediator-less microbial fuel cells (CAML-MFC) can be considered as a better choice for simple and complete energy conversion from the wastewater of such industries and also this could be considered as a new method to offset wastewater treatment plant operating costs.  相似文献   
92.
Increased homocysteine (hCys) level is an independent risk factor for cardiovascular complications in end-stage renal disease (ESRD) patients. The aim of this study was to evaluate effect of zinc (Zn) supplement on serum hCys level in ESRD patients. One hundred ESRD patients with Zn deficiency were enrolled in this double-blind randomized clinical trial. They were randomly subdivided into two groups and supplemented with Zn (Zn group) or placebo (control group) for 6 weeks. Fasting plasma hCys and Zn levels were measured before and at 43rd days after the start of the study. Serum Zn levels increased significantly (p?<?0.0001), in Zn-treated group in comparison to placebo-treated group. In the Zn-treated group, serum hCys levels reduced significantly (p?<?0.0001), compared to placebo group (p?>?0.05). There was a significant (p?<?0.0001) reduction of mean percentage of hCys in Zn-treated group compared to the placebo group. Our study showed that Zn supplementation decreases serum hCys levels in ESRD patients with Zn deficiency.  相似文献   
93.
94.
95.
Cancer treatment and therapy has moved from conventional chemotherapeutics to more mechanism-based targeted approach. Disturbances in the balance of histone acetyltransferase (HAT) and deacetylase (HDAC) leads to a change in cell morphology, cell cycle, differentiation, and carcinogenesis. In particular, HDAC plays an important role in carcinogenesis and therefore it has been a target for cancer therapy. Structurally diverse group of HDAC inhibitors are known. The broadest class of HDAC inhibitor belongs to hydroxamic acid derivatives that have been shown to inhibit both class I and II HDACs. Suberoylanilide hydroxamic acid (SAHA) and Trichostatin A (TSA), which chelate the zinc ions, fall into this group. In particular, SAHA, second generation HDAC inhibitor, is in several cancer clinical trials including solid tumors and hematological malignancy, advanced refractory leukemia, metastatic head and neck cancers, and advanced cancers. To our knowledge, selenium-containing HDAC inhibitors are not reported in the literature. In order to find novel HDAC inhibitors, two selenium based-compounds modeled after SAHA were synthesized. We have compared two selenium-containing compounds; namely, SelSA-1 and SelSA-2 for their inhibitory HDAC activities against SAHA. Both, SelSA-1 and SelSA-2 were potent HDAC inhibitors; SelSA-2 having IC50 values of 8.9 nM whereas SAHA showed HDAC IC50 values of 196 nM. These results provided novel selenium-containing potent HDAC inhibitors.  相似文献   
96.
Milking of microalgae   总被引:6,自引:0,他引:6  
The low productivity of algal cultures in the production of high-value compounds is the most significant bottleneck for commercialization of this technology. Cultures in which cell mass is reused for continuous production are proposed as a solution to overcome this problem. Recently, a method was developed in which beta-carotene was harvested from the microalga Dunaliella salina grown in a two-phase bioreactor. This raises the question of whether this technique could also be used in the mass production of secondary metabolites. Understanding the mechanism of the milking process and its relationship to the product formation pathway should reveal whether other products can be milked from various species of microalgae.  相似文献   
97.
The viral protein HIV-1 integrase is required for insertion of the viral genome into human chromosomes and for viral replication. Integration proceeds in two consecutive integrase-mediated reactions: 3'-processing and strand transfer. To investigate the DNA minor groove interactions of integrase relative to known sites of integrase action, we synthesized oligodeoxynucleotides containing single covalent adducts of known absolute configuration derived from trans-opening of benzo-[a]pyrene 7,8-diol 9,10-epoxide by the exocyclic 2-amino group of deoxyguanosine at specific positions in a duplex sequence corresponding to the terminus of the viral U5 DNA. Because the orientations of the hydrocarbon in the minor groove are known from NMR solution structures of duplex oligonucleotides containing these deoxyguanosine adducts, a detailed analysis of the relationship between the position of minor groove ligands and integrase interactions is possible. Adducts placed in the DNA minor groove two or three nucleotides from the 3'-processing site inhibited both 3'-processing and strand transfer. Inosine substitution showed that the guanine 2-amino group is required for efficient 3'-processing at one of these positions and for efficient strand transfer at the other. Mapping of the integration sites on both strands of the DNA substrates indicated that the adducts both inhibit strand transfer specifically at the minor groove bound sites and enhance integration at sites up to six nucleotides away from the adducts. These experiments demonstrate the importance of position-specific minor groove contacts for both the integrase-mediated 3'-processing and strand transfer reactions.  相似文献   
98.
In view of the crucial involvement of oxidative and electrophilic stress in various kidney disorders, this study was undertaken to test the hypothesis that pharmacologically-mediated coordinated upregulation of endogenous renal antioxidants and phase 2 enzymes is an effective strategy for renal protection. Notably, studies on the pharmacological inducibility of a series of antioxidants and phase 2 enzymes in renal tubular cells are lacking. Here we reported that incubation of normal rat kidney (NRK-52E) proximal tubular cells with low micromolar concentrations (10-50 microM) of the cruciferous nutraceutical, 1,2-dithiole-3-thione (D3T), led to a significant concentration-dependent induction of a wide spectrum of antioxidants and phase 2 enzymes, including catalase (CAT), reduced form of glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1 (NQO1), and heme oxygenase (HO). We further observed that D3T treatment also increased the protein and mRNA expression for CAT, gamma-glutamylcysteine ligase, GR, GST-A, GST-M, NQO1, and HO-1. Incubation of the renal tubular cells with H(2)O(2), SIN-1-derived peroxynitrite, or 4-hydroxy-2-nonenal led to concentration-dependent decreases in cell viability. Pretreatment of the renal tubular cells with 10-50 microM D3T afforded remarkable protection against the nephrocytotoxicity elicited by the above oxidative and electrophilic species. The D3T-mediated cytoprotection showed a concentration-dependent relationship. Taken together, this study for the first time comprehensively characterized the inducibility by a unique nutraceutical of a wide spectrum of antioxidative and phase 2 defenses in renal tubular cells at the levels of enzyme activity as well as protein and mRNA expression, and demonstrated that such a coordinated upregulation of cellular defenses led to remarkable protection of renal tubular cell from oxidative and electrophilic stress. Because of the crucial role of oxidative and electrophilic stress in inflammatory injury, D3T-mediated coordinated induction of endogenous antioxidative and phase 2 defenses may also serve as an important anti-inflammatory mechanism in kidneys.  相似文献   
99.
The influence of DNA base sequence context on the removal of a bulky benzo[a]pyrene diol epoxide-guanine adduct, (+)-trans-B[a]P-N2-dG (G*), by UvrABC nuclease from the thermophilic organism Bacillus caldotenax was investigated. The lesion was flanked by either T or C in otherwise identical complementary 43-mer duplexes (TG*T or CG*C, respectively). It was reported earlier that in the CG*C context, a dominant minor groove adduct structure was observed by NMR methods with all Watson-Crick base pairs intact, and the duplex exhibited a rigid bend. In contrast, in the TG*T context, a highly flexible bend was observed, base pairing at G*, and two 5'-base pairs flanking the adduct were impaired, and multiple solvent-accessible adduct conformations were observed. The TG*T-43-mer duplexes are incised with consistently greater efficiency by UvrABC proteins from B. caldotenax by a factor of 2.3 +/- 0.3. The rates of incisions increase with increasing temperature and are characterized by linear Arrhenius plots with activation energies of 27.0 +/- 1.5 and 23.4 +/- 1.0 kcal/mol for CG*C and TG*T duplexes, respectively. These values reflect the thermophilic characteristics of the UVrABC nuclease complex and the contributions of the different DNA substrates to the overall activation energies. These effects are consistent with base sequence context-dependent differences in structural disorder engendered by a loss of local base stacking interactions and Watson-Crick base pairing in the immediate vicinity of the lesions in the TG*T duplexes. The local weakening of base pairing interactions constitutes a recognition element of the UvrABC nucleotide excision repair apparatus.  相似文献   
100.

Background

Feasibility of genotyping of hundreds and thousands of single nucleotide polymorphisms (SNPs) in thousands of study subjects have triggered the need for fast, powerful, and reliable methods for genome-wide association analysis. Here we consider a situation when study participants are genetically related (e.g. due to systematic sampling of families or because a study was performed in a genetically isolated population). Of the available methods that account for relatedness, the Measured Genotype (MG) approach is considered the ‘gold standard’. However, MG is not efficient with respect to time taken for the analysis of genome-wide data. In this context we proposed a fast two-step method called Genome-wide Association using Mixed Model and Regression (GRAMMAR) for the analysis of pedigree-based quantitative traits. This method certainly overcomes the drawback of time limitation of the measured genotype (MG) approach, but pays in power. One of the major drawbacks of both MG and GRAMMAR, is that they crucially depend on the availability of complete and correct pedigree data, which is rarely available.

Methodology

In this study we first explore type 1 error and relative power of MG, GRAMMAR, and Genomic Control (GC) approaches for genetic association analysis. Secondly, we propose an extension to GRAMMAR i.e. GRAMMAR-GC. Finally, we propose application of GRAMMAR-GC using the kinship matrix estimated through genomic marker data, instead of (possibly missing and/or incorrect) genealogy.

Conclusion

Through simulations we show that MG approach maintains high power across a range of heritabilities and possible pedigree structures, and always outperforms other contemporary methods. We also show that the power of our proposed GRAMMAR-GC approaches to that of the ‘gold standard’ MG for all models and pedigrees studied. We show that this method is both feasible and powerful and has correct type 1 error in the context of genome-wide association analysis in related individuals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号