首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1547篇
  免费   105篇
  国内免费   4篇
  2023年   14篇
  2022年   36篇
  2021年   70篇
  2020年   52篇
  2019年   84篇
  2018年   61篇
  2017年   43篇
  2016年   59篇
  2015年   77篇
  2014年   81篇
  2013年   105篇
  2012年   134篇
  2011年   117篇
  2010年   67篇
  2009年   42篇
  2008年   60篇
  2007年   71篇
  2006年   78篇
  2005年   49篇
  2004年   43篇
  2003年   32篇
  2002年   31篇
  2001年   14篇
  2000年   16篇
  1999年   19篇
  1998年   8篇
  1997年   6篇
  1996年   9篇
  1994年   5篇
  1993年   6篇
  1992年   12篇
  1991年   6篇
  1990年   5篇
  1989年   8篇
  1988年   16篇
  1987年   8篇
  1986年   4篇
  1985年   6篇
  1984年   11篇
  1983年   10篇
  1982年   8篇
  1980年   4篇
  1979年   4篇
  1974年   5篇
  1973年   8篇
  1972年   4篇
  1969年   9篇
  1968年   4篇
  1967年   4篇
  1966年   3篇
排序方式: 共有1656条查询结果,搜索用时 31 毫秒
51.
Electricity generation from microbial fuel cells which treat food processing wastewater was investigated in this study. Anaerobic anode and aerobic cathode chambers were separated by a proton exchange membrane in a two-compartment MFC reactor. Buffer solutions and food industry wastewater were used as electrolytes in the anode and cathode chambers, respectively. The produced voltage and current intensity were measured using a digital multimeter. Effluents from the anode compartment were tested for COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity. The maximum current density and power production were measured 527 mA/m2 and 230 mW/m2 in the anode area, respectively, at operation organic loading (OLR) of 0.364 g COD/l.d. At OLR of 0.182 g COD/l.d, maximum voltage and columbic efficiency production were recorded 0.475 V and 21%, respectively. Maximum removal efficiency of COD, BOD5, NH3, P, TSS, VSS, SO4 and alkalinity were 86, 79, 73, 18, 68, 62, 30 and 58%, respectively. The results indicated that catalysts and mediator-less microbial fuel cells (CAML-MFC) can be considered as a better choice for simple and complete energy conversion from the wastewater of such industries and also this could be considered as a new method to offset wastewater treatment plant operating costs.  相似文献   
52.
Increased homocysteine (hCys) level is an independent risk factor for cardiovascular complications in end-stage renal disease (ESRD) patients. The aim of this study was to evaluate effect of zinc (Zn) supplement on serum hCys level in ESRD patients. One hundred ESRD patients with Zn deficiency were enrolled in this double-blind randomized clinical trial. They were randomly subdivided into two groups and supplemented with Zn (Zn group) or placebo (control group) for 6 weeks. Fasting plasma hCys and Zn levels were measured before and at 43rd days after the start of the study. Serum Zn levels increased significantly (p?<?0.0001), in Zn-treated group in comparison to placebo-treated group. In the Zn-treated group, serum hCys levels reduced significantly (p?<?0.0001), compared to placebo group (p?>?0.05). There was a significant (p?<?0.0001) reduction of mean percentage of hCys in Zn-treated group compared to the placebo group. Our study showed that Zn supplementation decreases serum hCys levels in ESRD patients with Zn deficiency.  相似文献   
53.
The whole-cell immobilization on chitosan matrix was evaluated. Bacillus sp., as producer of CGTase, was grown in solid-state and batch cultivation using three types of starches (cassava, potato and cornstarch). Biomass growth and substrate consumption were assessed by flow cytometry and modified phenol–sulfuric acid assays, respectively. Qualitative analysis of CGTase production was determined by colorless area formation on solid culture containing phenolphthalein. Scanning electron microscopy (SEM) analysis demonstrated that bacterial cells were immobilized on chitosan matrix efficiently. Free cells reached very high numbers during batch culture while immobilized cells maintained initial inoculum concentration. The maximum enzyme activity achieved by free cells was 58.15 U ml?1 (36 h), 47.50 U ml?1 (36 h) and 68.36 U ml?1 (36 h) on cassava, potato and cornstarch, respectively. CGTase activities for immobilized cells were 82.15 U ml?1 (18 h) on cassava, 79.17 U ml?1 (12 h) on potato and 55.37 U ml?1 (in 6 h and max 77.75 U ml?1 in 36 h) on cornstarch. Application of immobilization technique increased CGTase activity significantly. The immobilized cells produced CGTase with higher activity in a shorter fermentation time comparing to free cells.  相似文献   
54.
55.
56.

Objective

Human tumor cell lines form the basis of the majority of present day laboratory cancer research. These models are vital to studying the molecular biology of tumors and preclinical testing of new therapies. When compared to traditional adherent cell lines, suspension cell lines recapitulate the genetic profiles and histologic features of glioblastoma multiforme (GBM) with higher fidelity. Using a modified neural stem cell culture technique, here we report the characterization of GBM cell lines including GBM variants.

Methods

Tumor tissue samples were obtained intra-operatively and cultured in neural stem cell conditions containing growth factors. Tumor lines were characterized in vitro using differentiation assays followed by immunostaining for lineage-specific markers. In vivo tumor formation was assayed by orthotopic injection in nude mice. Genetic uniqueness was confirmed via short tandem repeat (STR) DNA profiling.

Results

Thirteen oncosphere lines derived from GBM and GBM variants, including a GBM with PNET features and a GBM with oligodendroglioma component, were established. All unique lines showed distinct genetic profiles by STR profiling. The lines assayed demonstrated a range of in vitro growth rates. Multipotency was confirmed using in vitro differentiation. Tumor formation demonstrated histologic features consistent with high grade gliomas, including invasion, necrosis, abnormal vascularization, and high mitotic rate. Xenografts derived from the GBM variants maintained histopathological features of the primary tumors.

Conclusions

We have generated and characterized GBM suspension lines derived from patients with GBMs and GBM variants. These oncosphere cell lines will expand the resources available for preclinical study.  相似文献   
57.
58.
The study was conducted with the aim of furthering our understanding of seasonality in the population dynamics and infestation rates of the fruit fly Bactrocera spp. in sweet gourd (Cucurbita moschata) during winter and summer in 2017. We also investigated the effects of using methyl eugenol traps on fly abundance and infestation. Two fruit fly species, namely, B. cucurbitae and B. dorsalis, were present in the sweet gourd field, and we observed fluctuations in their abundance. Compared to B. dorsalis, B. cucurbitae was significantly more abundant in both winter and summer. Infestation level was found to be the highest in fields lacking methyl eugenol traps in both seasons. Fruit fly larval population per infested fruit was higher in summer than in winter. Fly abundance was significantly and positively correlated with mean temperature and rainfall but significantly and negatively correlated with light intensity. Relative humidity was insignificantly but positively correlated with fly abundance. The temperature, light intensity, relative humidity, and rainfall individually explained 48.9, 24.1, 0.8, and 1.6% of variation in fruit fly abundance, respectively. The combined effect of the weather parameters on fruit fly abundance was 75.4% and was significant predictor of fruit fly abundance.  相似文献   
59.
Conversion of CO2 to energy‐rich chemicals using renewable energy is of much interest to close the anthropogenic carbon cycle. However, the current photoelectrochemical systems are still far from being practically feasible. Here the successful demonstration of a continuous, energy efficient, and scalable solar‐driven CO2 reduction process based on earth‐abundant molybdenum disulfide (MoS2) catalyst, which works in synergy with an inexpensive hybrid electrolyte of choline chloride (a common food additive for livestock) and potassium hydroxide (KOH) is reported. The CO2 saturated hybrid electrolyte utilized in this study also acts as a buffer solution (pH ≈ 7.6) to adjust pH during the reactions. This study reveals that this system can efficiently convert CO2 to CO with solar‐to‐fuel and catalytic conversion efficiencies of 23% and 83%, respectively. Using density functional theory calculations, a new reaction mechanism in which the water molecules near the MoS2 cathode act as proton donors to facilitate the CO2 reduction process by MoS2 catalyst is proposed. This demonstration of a continuous, cost‐effective, and energy efficient solar driven CO2 conversion process is a key step toward the industrialization of this technology.  相似文献   
60.
Plasmonics - A tunable plasmonic filter waveguide with indium antimonide activated by graphene layer configuration is proposed and numerically investigated. We demonstrate that the proposed tunable...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号