首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   554篇
  免费   64篇
  2022年   8篇
  2021年   13篇
  2020年   5篇
  2019年   6篇
  2018年   10篇
  2017年   8篇
  2016年   11篇
  2015年   25篇
  2014年   31篇
  2013年   33篇
  2012年   44篇
  2011年   39篇
  2010年   27篇
  2009年   24篇
  2008年   25篇
  2007年   29篇
  2006年   24篇
  2005年   25篇
  2004年   23篇
  2003年   30篇
  2002年   20篇
  2001年   8篇
  2000年   16篇
  1999年   9篇
  1998年   5篇
  1997年   3篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   12篇
  1990年   8篇
  1989年   4篇
  1987年   6篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1975年   3篇
  1974年   5篇
  1972年   6篇
  1971年   3篇
  1970年   3篇
  1969年   3篇
  1968年   3篇
  1967年   2篇
  1966年   2篇
排序方式: 共有618条查询结果,搜索用时 122 毫秒
81.
Rate parameters of the tricarboxylic acid cycle   总被引:1,自引:0,他引:1  
  相似文献   
82.
The 26S proteasome is the end point of the ubiquitin- and ATP-dependent degradation pathway. The 26S proteasome complex (26S PC) integrity and function has been shown to be highly dependent on ATP and its homolog nucleotides. We report here that the redox molecule NADH binds the 26S PC and is sufficient in maintaining 26S PC integrity even in the absence of ATP. Five of the 19S proteasome complex subunits contain a putative NADH binding motif (GxGxxG) including the AAA-ATPase subunit, Psmc1 (Rpt2). We demonstrate that recombinant Psmc1 binds NADH via the GxGxxG motif. Introducing the ΔGxGxxG Psmc1 mutant into cells results in reduced NADH-stabilized 26S proteasomes and decreased viability following redox stress induced by the mitochondrial inhibitor rotenone. The newly identified NADH binding of 26S proteasomes advances our understanding of the molecular mechanisms of protein degradation and highlights a new link between protein homeostasis and the cellular metabolic/redox state.  相似文献   
83.
84.
Determining the boundaries between species and deciding when to describe new species are challenging practices that are particularly difficult in groups with high levels of geographic variation. The coast horned lizards (Phrynosoma blainvillii, Phrynosoma cerroense and P. coronatum) have an extensive geographic distribution spanning many distinctive ecological regions ranging from northern California to the Cape Region of Baja California, Mexico, and populations differ substantially with respect to external morphology across much of this range. The number of taxa recognized in the group has been reevaluated by herpetologists over 20 times during the last 180 years, and typically without the aid of explicit species delimitation methods, resulting in a turbulent taxonomy containing anywhere from one to seven taxa. In this study, we evaluate taxonomic trends through time by ranking 15 of these species delimitation models (SDMs) using coalescent analyses of nuclear loci and SNPs in a Bayesian model comparison framework. Species delimitation models containing more species were generally favoured by Bayesian model selection; however, several three‐species models outperformed some four‐ and five‐species SDMs, and the top‐ranked model, which contained five species, outperformed all SDMs containing six species. Model performance peaked in the 1950s based on marginal likelihoods estimated from nuclear loci and SNPs. Not surprisingly, SDMs based on genetic data outperformed morphological taxonomies when using genetic data alone to evaluate models. The de novo estimation of population structure favours a three‐population model that matches the currently recognized integrative taxonomy containing three species. We discuss why Bayesian model selection might favour models containing more species, and why recognizing more than three species might be warranted.  相似文献   
85.
The detailed segregative cell division (SCD) processes and changes in the arrangement of cortical microtubules and actin filaments were examined in two species of Struvea. SCD was initiated by the appearance of annular constrictions along the lateral side of a mother cell. The constrictions decreased in diameter, became thin, tubular in shape, and pinched the protoplasm of the mother cell into several protoplasmic sections. The protoplasmic sections expanded and developed into daughter cells, which appressed each other, and were arranged in a single row. Lateral branches protruded from the upper parts of the daughter cells. The protoplasm of the lateral branches was divided by secondary SCDs and was distributed amongst the new daughter cells. SCD and lateral branch formation were essential for morphogenesis in Struvea. Cortical microtubules were arranged parallel and longitudinally to the cell axis before SCD. When SCD was initiated, there was considerable undulation of the cortical microtubules and several transverse bundles appeared in the cytoplasmic zone where annular constrictions occurred. A microtubule‐disrupting drug (amiprophos methyl) inhibited SCD. Actin filaments maintained reticulate patterns before and during SCD. These results demonstrated that SCD in Struvea species was quite distinct from that in Dictyosphaeria cavernosa reported previously.  相似文献   
86.
The amyloidogenic variant of β2-microglobulin, D76N, can readily convert into genuine fibrils under physiological conditions and primes in vitro the fibrillogenesis of the wild-type β2-microglobulin. By Fourier transformed infrared spectroscopy, we have demonstrated that the amyloid transformation of wild-type β2-microglobulin can be induced by the variant only after its complete fibrillar conversion. Our current findings are consistent with preliminary data in which we have shown a seeding effect of fibrils formed from D76N or the natural truncated form of β2-microglobulin lacking the first six N-terminal residues. Interestingly, the hybrid wild-type/variant fibrillar material acquired a thermodynamic stability similar to that of homogenous D76N β2-microglobulin fibrils and significantly higher than the wild-type homogeneous fibrils prepared at neutral pH in the presence of 20% trifluoroethanol. These results suggest that the surface of D76N β2-microglobulin fibrils can favor the transition of the wild-type protein into an amyloid conformation leading to a rapid integration into fibrils. The chaperone crystallin, which is a mild modulator of the lag phase of the variant fibrillogenesis, potently inhibits fibril elongation of the wild-type even once it is absorbed on D76N β2-microglobulin fibrils.  相似文献   
87.
88.
Chloroplast microsatellites for two Korean endemic species, Eranthis byunsanensis and E. pungdoensis (Ranunculaceae), were isolated to address the questions of their distributional patterns and evolutionary relationships, using next-generation sequencing. Twenty-four polymorphic chloroplast microsatellite markers for these two species were developed, and then characterized in 65 individuals (55 individuals of E. byunsanensis and 10 individuals of E. pungdoensis). The number of alleles per locus ranged from 2 to 9; the average number of alleles across all the loci scored 4.792. The unbiased diversity per locus ranged from 0.089 to 0.880; the unbiased diversity averaged over all the loci was 0.646. The developed markers were successfully amplified for three congeneric species, E. stellata, E. pinnatifida, and E. longistipitata. The markers developed in this study can provide a valuable and important tool for understanding genetic variations, population structures, evolutionary histories and phylogeography of E. byunsanensis, E. pungdoensis, and related species.  相似文献   
89.
The MRN (Mre11-Rad50-Nbs1)-ATM (ataxia-telangiectasia mutated) pathway is essential for sensing and signaling from DNA double-strand breaks. The MRN complex acts as a DNA damage sensor, maintains genome stability during DNA replication, promotes homology-dependent DNA repair and activates ATM. MRN is essential for cell viability, which has limited functional studies of the complex. Small-molecule inhibitors of MRN could circumvent this experimental limitation and could also be used as cellular radio- and chemosensitization compounds. Using cell-free systems that recapitulate faithfully the MRN-ATM signaling pathway, we designed a forward chemical genetic screen to identify inhibitors of the pathway, and we isolated 6-(4-hydroxyphenyl)-2-thioxo-2,3-dihydro-4(1H)-pyrimidinone (mirin, 1) as an inhibitor of MRN. Mirin prevents MRN-dependent activation of ATM without affecting ATM protein kinase activity, and it inhibits Mre11-associated exonuclease activity. Consistent with its ability to target the MRN complex, mirin abolishes the G2/M checkpoint and homology-dependent repair in mammalian cells.  相似文献   
90.
The Arabidopsis thaliana AtOPT3 belongs to the oligopeptide transporter (OPT) family, a relatively poorly characterized family of peptide/modified peptide transporters found in archebacteria, bacteria, fungi, and plants. A null mutation in AtOPT3 resulted in embryo lethality, indicating an essential role for AtOPT3 in embryo development. In this article, we report on the isolation and phenotypic characterization of a second AtOPT3 mutant line, opt3-2, harboring a T-DNA insertion in the 5' untranslated region of AtOPT3. The T-DNA insertion in the AtOPT3 promoter resulted in reduced but sufficient AtOPT3 expression to allow embryo formation in opt3-2 homozygous seeds. Phenotypic analyses of opt3-2 plants revealed three interesting loss-of-function phenotypes associated with iron metabolism. First, reduced AtOPT3 expression in opt3-2 plants resulted in the constitutive expression of root iron deficiency responses regardless of exogenous iron supply. Second, deregulation of root iron uptake processes in opt3-2 roots resulted in the accumulation of very high levels of iron in opt3-2 tissues. Hyperaccumulation of iron in opt3-2 resulted in the formation of brown necrotic areas in opt3-2 leaves and was more pronounced during the seed-filling stage. Third, reduced AtOPT3 expression resulted in decreased accumulation of iron in opt3-2 seeds. The reduced accumulation of iron in opt3-2 seeds is especially noteworthy considering the excessively high levels of accumulated iron in other opt3-2 tissues. AtOPT3, therefore, plays a critical role in two important aspects of iron metabolism, namely, maintenance of whole-plant iron homeostasis and iron nutrition of developing seeds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号