首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   70篇
  国内免费   1篇
  559篇
  2018年   6篇
  2017年   7篇
  2016年   9篇
  2015年   17篇
  2014年   17篇
  2013年   13篇
  2012年   25篇
  2011年   23篇
  2010年   16篇
  2009年   22篇
  2008年   20篇
  2007年   17篇
  2006年   14篇
  2005年   17篇
  2004年   9篇
  2003年   11篇
  2002年   12篇
  2001年   10篇
  2000年   18篇
  1999年   14篇
  1998年   8篇
  1997年   7篇
  1996年   8篇
  1994年   3篇
  1992年   11篇
  1991年   12篇
  1990年   11篇
  1989年   19篇
  1988年   13篇
  1987年   10篇
  1986年   10篇
  1985年   9篇
  1984年   8篇
  1983年   8篇
  1982年   8篇
  1981年   5篇
  1980年   7篇
  1979年   7篇
  1978年   5篇
  1977年   11篇
  1976年   5篇
  1975年   8篇
  1974年   10篇
  1972年   7篇
  1970年   3篇
  1969年   5篇
  1968年   6篇
  1967年   6篇
  1966年   4篇
  1965年   4篇
排序方式: 共有559条查询结果,搜索用时 15 毫秒
31.
Abstract

Systemic sclerosis (SSc) is a multisystem autoimmune disease: characterised from the clinical side by progressive vasculopathy and fibrosis of the skin and different organs and from the biochemical side by fibroblast deregulation with excessive production of collagen and increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4). The latter contributes to an overproduction of reactive oxygen species that through an autocrine loop maintains NOX4 in a state of activation. Reactive oxygen and nitrogen species are implicated in the origin and perpetuation of several clinical manifestations of SSc having vascular damage in common; attempts to dampen oxidative and nitrative stress through different agents with antioxidant properties have not translated into a sustained clinical benefit. Objective of this narrative review is to describe the origin and clinical implications of oxidative and nitrative stress in SSc, with particular focus on the central role of NOX4 and its interactions, to re-evaluate the antioxidant approaches so far used to limit disease progression, to appraise the complexity of antioxidant treatment and to touch on novel pathways elements of which may represent specific treatment targets in the not so distant future.  相似文献   
32.
One of ecology's grand challenges is developing general rules to explain and predict highly complex systems. Understanding and predicting ecological processes from species' traits has been considered a ‘Holy Grail’ in ecology. Plant functional traits are increasingly being used to develop mechanistic models that can predict how ecological communities will respond to abiotic and biotic perturbations and how species will affect ecosystem function and services in a rapidly changing world; however, significant challenges remain. In this review, we highlight recent work and outstanding questions in three areas: (i) selecting relevant traits; (ii) describing intraspecific trait variation and incorporating this variation into models; and (iii) scaling trait data to community‐ and ecosystem‐level processes. Over the past decade, there have been significant advances in the characterization of plant strategies based on traits and trait relationships, and the integration of traits into multivariate indices and models of community and ecosystem function. However, the utility of trait‐based approaches in ecology will benefit from efforts that demonstrate how these traits and indices influence organismal, community, and ecosystem processes across vegetation types, which may be achieved through meta‐analysis and enhancement of trait databases. Additionally, intraspecific trait variation and species interactions need to be incorporated into predictive models using tools such as Bayesian hierarchical modelling. Finally, existing models linking traits to community and ecosystem processes need to be empirically tested for their applicability to be realized.  相似文献   
33.
Repetitive extragenic palindromic (REP) sequences are highly conserved inverted repeat sequences originally discovered in Escherichia coli and Salmonella typhimurium. We have physically mapped these sequences in the E. coli genome by using Southern hybridization of an ordered phage bank of E. coli (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987) with generic REP probes derived from the REP consensus sequence. The set of REP probe-hybridizing clones was correlated with a set of clones expected to contain REP sequences on the basis of computer searches. We also show that a generic REP probe can be used in Southern hybridization to analyze genomic DNA digested with restriction enzymes to determine genetic relatedness among natural isolates of E. coli. A search for these sequences in other members of the family Enterobacteriaceae shows a consistent correlation between both the number of occurrences and the hybridization strength and genealogical relationship.  相似文献   
34.
During eukaryotic cell division, the sister chromatids of duplicated chromosomes are pulled apart by microtubules, which connect via kinetochores. The kinetochore is a multiprotein structure that links centromeres to microtubules, and that emits molecular signals in order to safeguard the equal distribution of duplicated chromosomes over daughter cells. Although microtubule‐mediated chromosome segregation is evolutionary conserved, kinetochore compositions seem to have diverged. To systematically inventory kinetochore diversity and to reconstruct its evolution, we determined orthologs of 70 kinetochore proteins in 90 phylogenetically diverse eukaryotes. The resulting ortholog sets imply that the last eukaryotic common ancestor (LECA) possessed a complex kinetochore and highlight that current‐day kinetochores differ substantially. These kinetochores diverged through gene loss, duplication, and, less frequently, invention and displacement. Various kinetochore components co‐evolved with one another, albeit in different manners. These co‐evolutionary patterns improve our understanding of kinetochore function and evolution, which we illustrated with the RZZ complex, TRIP13, the MCC, and some nuclear pore proteins. The extensive diversity of kinetochore compositions in eukaryotes poses numerous questions regarding evolutionary flexibility of essential cellular functions.  相似文献   
35.
The coastal ecosystems of California are highly utilized by humans and animals, but the ecology of fecal bacteria at the land–sea interface is not well understood. This study evaluated the distribution of potentially pathogenic bacteria in invertebrates from linked marine, estuarine, and freshwater ecosystems in central California. A variety of filter-feeding clams, mussels, worms, and crab tissues were selectively cultured for Salmonella spp., Campylobacter spp., Escherichia coli-O157, Clostridium perfringens, Plesiomonas shigelloides, and Vibrio spp. A longitudinal study assessed environmental risk factors for detecting these bacterial species in sentinel mussel batches. Putative risk factors included mussel collection near higher risk areas for livestock or human sewage exposure, adjacent human population density, season, recent precipitation, water temperature, water type, bivalve type, and freshwater outflow exposure. Bacteria detected in invertebrates included Salmonella spp., C. perfringens, P. shigelloides, Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio alginolyticus. Overall, 80% of mussel batches were culture positive for at least one of the bacterial species, although the pathogens Campylobacter, E. coli-O157, and Salmonella were not detected. Many of the same bacterial species were also cultured from upstream estuarine and riverine invertebrates. Exposure to human sewage sources, recent precipitation, and water temperature were significant risk factors for bacterial detection in sentinel mussel batches. These findings are consistent with the hypothesis that filter-feeding invertebrates along the coast concentrate fecal bacteria flowing from land to sea and show that the relationships between anthropogenic effects on coastal ecosystems and the environmental niches of fecal bacteria are complex and dynamic.  相似文献   
36.
37.
Southern Sea Otter as a Sentinel of Marine Ecosystem Health   总被引:1,自引:0,他引:1  
The southern sea otter (Enhydra lutris nereis) is listed as threatened under the Endangered Species Act (ESA) and is a keystone species, strongly influencing the abundance and diversity of the other species within its kelp forest ecosystem. This is accomplished primarily by preying upon urchins that eat the kelp stipe and holdfast, which can reduce a kelp forest to an urchin barren. Sea otters are very susceptible to marine pollutants such as petroleum, which may be directly toxic and/or alter their furs insulating properties. Sea otters are an excellent sentinel species. They eat approximately 25% of their body weight per day in shellfish and other invertebrates, and can concentrate and integrate chemical contaminants. In addition, they appear to be susceptible to a number of diseases and parasites that may have anthropogenic origins, and shellfish may serve as an intermediary for some of these infections. Many of the shellfish the otters eat are also harvested for human food. In their role as sentinels, sea otter health has implications for human health, economic sustainability of shellfisheries, as well as overall marine ecosystem health. The recent southern sea otter decline has been viewed with some alarm by conservationists and, indeed, recovery seems a long way off. High mortality rather than depressed recruitment appears to underlie the decline. A good deal of debate has centered on the role of infectious diseases and parasites, exposure to contaminants, nutrition and prey availability, net and pot fishery interactions, and other sources of mortality. Current research is being done related to major classes of mortality, various types of pollutants and some specific organisms causing southern sea otter mortality, and their implications for marine ecosystem health and sustainability.  相似文献   
38.
The position, porosity and oil-filled nature of the zygomatic process of the squamosal bone (ZPSB) of the Florida manatee, Trichechus manatus latirostris, suggest that it may have a similar sound conduction function to that of the intramandibular fat body (IMFB) of the bottlenose dolphin, Tursiops truncatus, and other odontocetes. To examine this possibility we determined the lipid composition of the ZPSB and adipose tissue from the dorsal part of the head region of the Florida manatee, and compared it to that of the dolphin IMFB and melon (another fatty area implicated in sound conduction in odontocetes). Lipids from manatee ZPSB and from adipose tissue were composed almost entirely of triacylglycerols. The most abundant fatty acids of the ZPSB were 18:1, 16:0, 14:0 and 16:1. The major fatty acids of the adipose tissue in the head were the four mentioned above, along with 12:0 and 18:0. Manatee samples did not contain isovaleric acid (iso-5:0), which was found in the bottlenose dolphin IMFB and melon, and has been related to sound conduction in dolphins and some other odontocetes. Thus, if manatee tissues are capable of sound conduction, and this process does occur through the ZPSB, a somewhat different suite of lipid components must support this function.  相似文献   
39.
Detailed postmortem examination of southern sea otters (Enhydra lutris nereis) found along the California (USA) coast has provided an exceptional opportunity to understand factors influencing survival in this threatened marine mammal species. In order to evaluate recent trends in causes of mortality, the demographic and geographic distribution of causes of death in freshly deceased beachcast sea otters necropsied from 1998-2001 were evaluated. Protozoal encephalitis, acanthocephalan-related disease, shark attack, and cardiac disease were identified as common causes of death in sea otters examined. While infection with acanthocephalan parasites was more likely to cause death in juvenile otters, Toxoplasma gondii encephalitis, shark attack, and cardiac disease were more common in prime-aged adult otters. Cardiac disease is a newly recognized cause of mortality in sea otters and T. gondii encephalitis was significantly associated with this condition. Otters with fatal shark bites were over three times more likely to have pre-existing T. gondii encephalitis suggesting that shark attack, which is a long-recognized source of mortality in otters, may be coupled with a recently recognized disease in otters. Spatial clusters of cause-specific mortality were detected for T. gondii encephalitis (in Estero Bay), acanthocephalan peritonitis (in southern Monterey Bay), and shark attack (from Santa Cruz to Point A?o Nuevo). Diseases caused by parasites, bacteria, or fungi and diseases without a specified etiology were the primary cause of death in 63.8% of otters examined. Parasitic disease alone caused death in 38.1% of otters examined. This pattern of mortality, observed predominantly in juvenile and prime-aged adult southern sea otters, has negative implications for the overall health and recovery of this population.  相似文献   
40.
The tolerance of 26 Bacillus species isolated from alkaline fermented foods, five other bacilli and nine non spore-forming bacteria to alkaline pH and ammonia was determined. All grew at pH 7, 8 and 9 in the presence of 930 mmol l-1 NH4 + at pH 7.0, and in the presence of NH3 concentrations up to 5 mmol l-1 at pH 7.0 and 8.0. At higher NH3 concentrations, growth of some of the bacteria was inhibited and at 500 mmol l-1 only B. pasteurii and B. pumilus grew. Bacteria from alkaline food fermentations included strains relatively sensitive to NH3 (inhibited by 50 mmol l-1) and relatively tolerant strains (grew in the presence of 300 mmol l-1) and there was no evidence that they were more tolerant to NH3 than bacteria not associated with these fermentations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号