首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   70篇
  国内免费   1篇
  2018年   6篇
  2017年   7篇
  2016年   9篇
  2015年   17篇
  2014年   17篇
  2013年   13篇
  2012年   25篇
  2011年   23篇
  2010年   16篇
  2009年   22篇
  2008年   20篇
  2007年   17篇
  2006年   14篇
  2005年   17篇
  2004年   9篇
  2003年   11篇
  2002年   12篇
  2001年   10篇
  2000年   18篇
  1999年   14篇
  1998年   8篇
  1997年   7篇
  1996年   8篇
  1994年   3篇
  1992年   11篇
  1991年   12篇
  1990年   11篇
  1989年   19篇
  1988年   13篇
  1987年   10篇
  1986年   10篇
  1985年   9篇
  1984年   8篇
  1983年   8篇
  1982年   8篇
  1981年   5篇
  1980年   7篇
  1979年   7篇
  1978年   5篇
  1977年   11篇
  1976年   5篇
  1975年   8篇
  1974年   10篇
  1972年   7篇
  1970年   3篇
  1969年   5篇
  1968年   6篇
  1967年   6篇
  1966年   4篇
  1965年   4篇
排序方式: 共有559条查询结果,搜索用时 15 毫秒
21.
The vesicular-arbuscular (VA) mycorrhizal fungi of commercially grown Easter lily (Lilium longiflorum Thunb.) were studied. Soil and root samples were collected monthly from March through September 1975 from five fields in the coastal area of southern Oregon and northern California. Soil seivings were inoculated onto clover, onion, and lily to cause infections resulting in the production of many new mycorrhizal spores facilitating identification. Four VA mycorrhizal species were found: Acaulospora trappei, A. elegans, Glomus monosporus, and G. fasciculatus. All four VA species infected Easter lily, clover, and onion. Acaulospora trappei and G. fasciculatus were the most commonly isolated species from all five fields. Mycorrhizal infections in roots of field-grown lilies were sparse and presumably young in March and gradually increased in size and number until September when bulbs were harvested. Over 75% of each root system became infected with mycorrhizae in fields with all four fungal species, and those levels were reached by July. In fields with only two mycorrhizal species, usually 50% or less of each root system was infected, even by the end of the growing season.  相似文献   
22.
Traffic ATPases constitute a superfamily of transporters that include prokaryotic permeases and medically important eukaryotic proteins, such as the multidrug resistance P-glycoprotein and the cystic fibrosis gene product. We present a structure-function analysis of a member of this superfamily, the prokaryotic histidine permease, using mutations generated both in vitro and in vivo, and assaying several biochemical functions. The analysis supports a previously predicted structural model and allows the assignment of specific functions to several predicted structural features. Mutations in the secondary structure features which form the nucleotide-binding pocket in general cause the loss of ATP binding activity. Mutations in the helical domain retain ATP binding activity. Several mutations have been identified which may affect the signaling mechanism between ATP hydrolysis and membrane translocation. We relate our findings to those emerging from the recent biochemical and genetic analyses of cystic fibrosis mutations.  相似文献   
23.
Repetitive extragenic palindromic (REP) sequences are highly conserved inverted repeat sequences originally discovered in Escherichia coli and Salmonella typhimurium. We have physically mapped these sequences in the E. coli genome by using Southern hybridization of an ordered phage bank of E. coli (Y. Kohara, K. Akiyama, and K. Isono, Cell 50:495-508, 1987) with generic REP probes derived from the REP consensus sequence. The set of REP probe-hybridizing clones was correlated with a set of clones expected to contain REP sequences on the basis of computer searches. We also show that a generic REP probe can be used in Southern hybridization to analyze genomic DNA digested with restriction enzymes to determine genetic relatedness among natural isolates of E. coli. A search for these sequences in other members of the family Enterobacteriaceae shows a consistent correlation between both the number of occurrences and the hybridization strength and genealogical relationship.  相似文献   
24.
Rapid polymerase chain reaction amplification using intact bacterial cells   总被引:6,自引:0,他引:6  
A K Joshi  V Baichwal  G F Ames 《BioTechniques》1991,10(1):42, 44-42, 45
We have demonstrated that efficient polymerase chain reaction amplifications from chromosomal DNA can be carried out using whole bacterial cells as the starting material. Cells from the liquid or solid cultures can be used directly, without any pre-treatment, thus eliminating the need for DNA isolation.  相似文献   
25.
The periplasmic histidine transport system (permease) of Escherichia coli and Salmonella typhimurium is composed of a soluble, histidine-binding receptor located in the periplasm and a complex of three membrane-bound proteins of which one, HisP, was shown previously to bind ATP. These permeases are energized by ATP. HisP is a member of a family of membrane transport proteins which is conserved in all periplasmic permeases and is presumed to be involved in coupling the energy of ATP to periplasmic transport. In this paper the nature of the ATP-binding site of HisP has been explored by identification of some of the residues that come into contact with ATP. HisP was derivatized with 8-azido-ATP (N3ATP). Both the underivatized and the derivatized forms of HisP were solubilized, purified, and digested with trypsin. The resulting tryptic peptides were resolved by high pressure liquid chromatography, and peptides modified by N3ATP were isolated and sequenced. Two peptides, X and Z, spanning amino acid residues 16-23 and 31-45, were found to contain sites of N3ATP attachment at His19 and Ser41, respectively. Both peptides are close to the amino-terminal end of HisP; peptide Z is located in one of the well conserved regions comprising the nucleotide-binding consensus motifs of the energy-coupling components of these permeases. These consensus motifs are found in many purine nucleotide-binding proteins. The relationship between the location of these residues and the overall structure of the ATP-binding site is discussed.  相似文献   
26.
Incubation of [14C]-ring labeled hexamethylmelamine and pentamethylmelamine with rat and mouse liver microsomal preparations results in metabolic activation of both drugs as measured by covalent binding of radiolabel to acid-precipitable microsomal macromolecules. Covalent binding is dependent on viable microsomes, NADPH, and molecular oxygen. Binding of HMM (280 pmol/mg protein/15 min) was approximately 5 times greater than that observed for PMM (60 pmol/mg protein/15 min), and represents 0.22% of incubated material. Similar results were found with [14C]-methyl labeled substrates. Pretreatment with phenobarbital increased covalent binding while addition of SKF 525-A, addition of glutathione, or incubation in an 80% carbon monoxide atmosphere reduced covalent binding.  相似文献   
27.
The effect of motility on the competitive success of Rhizobium meliloti in nodule production was investigated. A motile strain formed more nodules than expected when mixed at various unfavorable ratios with either flagellated or nonflagellated nonmotile derivatives. We conclude that motility confers a selective advantage on rhizobia when competing with nonmotile strains.  相似文献   
28.
Mutations in Salmonella typhimurium strains lacking nonspecific acid phosphatase mapped in two unlinked loci. One of these, phoP, was cotransducible by phage P22 with purB, whereas the second, phoN, was cotransducible by phage P1 with purA. Mutants with temperature-sensitive nonspecific acid phosphatase activity (measured in whole cells) were also isolated. A phoN mutant with thermolabile whole-cell activity was isolated directly from wild-type LT-2. Several other mutants with temperature-sensitive enzyme activity were also isolated as revertants of phoN mutants. These data suggest that phoN might be a structural locus for nonspecific acid phosphatase. The observation that a mutation resulting in high level of nonspecific acid phosphatase mapped in phoP suggests a possible regulatory role for this locus.  相似文献   
29.
Nitrogen control in Salmonella typhimurium is not limited to glutamine synthetase but affects, in addition, transport systems for histidine, glutamine, lysine-arginine-ornithine, and glutamate-aspartate. Synthesis of both glutamine synthetase and transport proteins is elevated by limitation of nitrogen in the growth medium or as a result of nitrogen (N)-regulatory mutations. Increases in the amounts of these proteins were demonstrated by direct measurements of their activities, by immunological techniques, and by visual inspection of cell fractions after gel electrophoresis. The N-regulatory mutations are closely linked on the chromosome to the structural gene for glutamine synthetase, glnA: we discuss the possibility that they lie in a regulatory gene, glnR, which is distinct from glnA. Increases in amino acid transport in N-regulatory mutant strains were indicated by increased activity in direct transport assays, improved growth on substrates of the transport systems, and increased sensitivity to inhibitory analogs that are trnasported by these systems. Mutations to loss of function of individual transport components (hisJ, hisP, glnH, argT) were introduced into N-regulatory mutant strains to determine the roles of these components in the phenotype and transport behavior of the strains. The structural gene for the periplasmic glutamine-binding protein, glnH, was identified, as was a gene argT that probably encodes the structure of the lysine-arginine-ornithine-binding protein. Genes encoding the structures of the histidine- and glutamine-binding proteins are not linked to glnA or to each other by P22-mediated transduction; thus, nitrogen control is exerted on several unlinked genes.  相似文献   
30.
The transport of histidine in the gram negative bacterium S. typhimurium has been studied over a number of years and found to occur through five transport systems (Ames, 1972). Of these, the one with the highest affinity has been studied in detail from the genetic, physiological and biochemical point of view. This system, known as the high-affinity histidine permease, is composed of two subsystems, the J-P and K-P systems, which have a component in common, the P protein, presumed to be membrane-bound. The J-P system, moreover, is known to require the presence of a periplasmic histidine-binding protein, the J protein. The J protein is coded for by the hisJ gene and the P protein is coded for by the hisP gene. Both of these genes have been mapped at 75 min on the Salmonella chromosomal map. Adjacent to them is a regulatory gene, the dhuA gene. The periplasmic histidine-binding protein J has been shown to interact directly with the second component of transport, the P protein (Ames and Spudich, 1976). In accordance with this, histidine-binding protein J has been shown to contain, besides the histidine-binding site, a second site, essential for function, the interaction site (Kustu and Ames, 1974). We have recently shown that a mutant J protein with a defective interaction site but an intact histidine-binding site cannot function in histidine transport, unless an appropriate compensating mutation is introduced in the P protein. The interaction between the J and P proteins is an obligatory step in transport. The mutation in the interaction site of the J protein has been shown to map in the hisJ gene, and the compensating supressor mutation in the P protein has been shown to map in the hisP gene. Our contention that the J and P proteins engage in a functional interaction assumes further strength from other studies on protein-protein interaction in bacteriophage development and in ribosomal structure. Among the possible functions of the J-P interaction in histidine transport, a likely one is the transmission of information to the P protein, concerning whether or not the histidine-binding site on the J protein is occupied. Appropriate conformational changes then can occur in either the J or the P protein, or both, such that the histidine is released in the correct location and direction on the inside of the cell. This could occur either by a pore-formation mechanism or by binding-site translocation. Another alternative is that the P protein is part of an energy transducing mechanism in which energy is transmitted to the J protein, through the interaction site, as a prerequisite for the J protein participation in translocation. Among the interesting findings coming out of this work, is also the fact that the P protein performs a central function in transport being involved in the permeation of other substrates besides histidine. It is likely that other binding proteins besides the J protein require the P protein. Thus an interesting question which we are trying to answer at present is whether the P protein has separate interaction sites for each of these other binding proteins requiring its function, or whether they all interact at one common site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号