首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1345篇
  免费   189篇
  2022年   12篇
  2021年   21篇
  2016年   23篇
  2015年   30篇
  2014年   32篇
  2013年   46篇
  2012年   38篇
  2011年   73篇
  2010年   34篇
  2009年   40篇
  2008年   51篇
  2007年   53篇
  2006年   45篇
  2005年   46篇
  2004年   29篇
  2003年   41篇
  2002年   43篇
  2001年   40篇
  2000年   27篇
  1999年   32篇
  1998年   25篇
  1997年   17篇
  1994年   11篇
  1993年   12篇
  1992年   25篇
  1991年   32篇
  1990年   22篇
  1989年   37篇
  1988年   30篇
  1987年   34篇
  1986年   13篇
  1985年   26篇
  1984年   21篇
  1983年   27篇
  1982年   21篇
  1981年   28篇
  1980年   19篇
  1979年   21篇
  1978年   16篇
  1977年   28篇
  1976年   16篇
  1975年   24篇
  1974年   15篇
  1973年   22篇
  1972年   29篇
  1971年   17篇
  1970年   19篇
  1969年   13篇
  1967年   11篇
  1966年   12篇
排序方式: 共有1534条查询结果,搜索用时 31 毫秒
91.
In the genome‐engineering era, it is increasingly important that researchers have access to a common set of platform strains that can serve as debugged production chassis and the basis for applying new metabolic engineering strategies for modeling and characterizing flux, engineering complex traits, and optimizing overall performance. Here, we describe such a platform strain of E. coli engineered for ethanol production. Starting with a fully characterized host strain (BW25113), we site‐specifically integrated the genes required for homoethanol production under the control of a strong inducible promoter into the genome and deleted the genes encoding four enzymes from competing pathways. This strain is capable of producing >30 g/L of ethanol in minimal media with <2 g/L produced of any fermentative byproduct. Using this platform strain, we tested previously identified ethanol tolerance genes and found that while tolerance was improved under certain conditions, any effect on ethanol production or tolerance was lost when grown under production conditions. Thus, our findings reinforce the need for a metabolic engineering “commons” that could provide a set of platform strains for use in more sophisticated genome‐engineering strategies. Towards this end, we have made this production strain available to the scientific community. Biotechnol. Bioeng. 2013; 110: 1520–1526. © 2013 Wiley Periodicals, Inc.  相似文献   
92.
93.
There are two schools of thought regarding the cyclooxygenase (COX) isoform active in the vasculature. Using urinary prostacyclin markers some groups have proposed that vascular COX-2 drives prostacyclin release. In contrast, we and others have found that COX-1, not COX-2, is responsible for vascular prostacyclin production. Our experiments have relied on immunoassays to detect the prostacyclin breakdown product, 6-keto-PGF and antibodies to detect COX-2 protein. Whilst these are standard approaches, used by many laboratories, antibody-based techniques are inherently indirect and have been criticized as limiting the conclusions that can be drawn. To address this question, we measured production of prostanoids, including 6-keto-PGF, by isolated vessels and in the circulation in vivo using liquid chromatography tandem mass spectrometry and found values essentially identical to those obtained by immunoassay. In addition, we determined expression from the Cox2 gene using a knockin reporter mouse in which luciferase activity reflects Cox2 gene expression. Using this we confirm the aorta to be essentially devoid of Cox2 driven expression. In contrast, thymus, renal medulla, and regions of the brain and gut expressed substantial levels of luciferase activity, which correlated well with COX-2-dependent prostanoid production. These data are consistent with the conclusion that COX-1 drives vascular prostacyclin release and puts the sparse expression of Cox2 in the vasculature in the context of the rest of the body. In doing so, we have identified the thymus, gut, brain and other tissues as target organs for consideration in developing a new understanding of how COX-2 protects the cardiovascular system.  相似文献   
94.
Integration of biological networks and gene expression data using Cytoscape   总被引:1,自引:0,他引:1  
Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape.  相似文献   
95.
96.
Insulin signalling is a very ancient and well conserved pathway in metazoan cells, dependent on insulin receptors (IR) which are transmembrane proteins with tyrosine kinase activity. A unique IR is usually present in invertebrates whereas two IR members are found with different functions in vertebrates. This work demonstrates the existence of two distinct IR homologs (SmIR-1 and SmIR-2) in the parasite trematode Schistosoma mansoni. These two receptors display differences in several structural motifs essential for signalling and are differentially expressed in parasite tissues, suggesting that they could have distinct functions. The gene organization of SmIR-1 and SmIR-2 is similar to that of the human IR and to that of the IR homolog from Echinococcus multilocularis (EmIR), another parasitic platyhelminth. SmIR-1 and SmIR-2 were shown to interact with human pro-insulin but not with pro-insulin-like growth factor-1 in two-hybrid assays. Phylogenetic results indicated that SmIR-2 and EmIR might be functional orthologs whereas SmIR-1 would have emerged to fulfil specific functions in schistosomes.  相似文献   
97.
We reported herein an efficient, environmentally friendly synthesis of hydrazine carboxamides (6a–l) in a water-glycerol (6:4) solvent system using ultrasonic irradiation. Ultrasonicated reactions were found to be much faster and more productive than conventional synthesis. The prepared compounds (6a–l) were tested against nine panels of 60 cancer cell lines according to the National Cancer Institute (NCI US) protocol. N-(4-Chlorophenyl)-2-(2-oxoindolin-3-ylidene)hydrazine-1-carboxamide (6b) was discovered to be promising anticancer agents with higher sensitivity against CCRF-CEM, HOP-92, UO-31, RMPI-8226, HL-60(TB), and MDA-MB-468 with percent growth inhibitions (%GIs) of 143.44, 33.46, 33.21, 33.09, 29.81, and 29.55 respectively. Compounds (6a–l) tested showed greater anticancer activity than Imatinib, except for compound 6k. Compounds 6b and 6c were found to be lethal on the CCRF-CEM leukaemia cell line, with %GIs of 143.44 and 108.91, respectively. Furthermore, molecular docking analysis was performed to investigate ligand binding affinity at the active site of epidermal growth factor (EGFR).  相似文献   
98.
Nicotinamide adenine dinucleotide (NAD) levels decline during aging, contributing to physical and metabolic dysfunction. The NADase CD38 plays a key role in age‐related NAD decline. Whether the inhibition of CD38 increases lifespan is not known. Here, we show that the CD38 inhibitor 78c increases lifespan and healthspan of naturally aged mice. In addition to a 10% increase in median survival, 78c improved exercise performance, endurance, and metabolic function in mice. The effects of 78c were different between sexes. Our study is the first to investigate the effect of CD38 inhibition in naturally aged animals.  相似文献   
99.
CMP-beta-N-acetylneuraminic acid (CMP-neuNAc) is the substrate for the sialylation of glycoconjugates by sialyltransferases in microbes and higher eukaryotes. CMP-neuNAc synthetase catalyzes the formation of this substrate, CMP-neuNAc, from CTP and neuNAc. In this report we describe the purification of CMP-neuNAc synthetase from bovine anterior pituitary glands. The enzyme was purified by ion exchange, gel filtration, and affinity chromatography. The protein was homogeneous on SDS-PAGE with a molecular weight of 52 kDa, a subunit size similar to that of the E.coli K1 (48.6 kDa). The identity of the 52 kDa protein band was confirmed by native gel electrophoresis in that the position of the enzyme activity in gel slices coincided with the position of major bands in the stained gel. Photoaffinity labeling with 125I-ASA-CDP ethanolamine resulted in the modification of a 52 kDa polypeptide that was partially protected against modification by the substrate CTP. Enzyme activity in crude fractions could be adsorbed onto an immunoadsorbent prepared from antibody against the purified 52 kDa protein. Taken together these data suggest that the 52 kDa polypeptide purified by this procedure described in this report is indeed CMP-neuNAc synthetase. The active enzyme chromatographed on a gel filtration column at 158 kDa suggesting it exists in its native form as an oligomer.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号