首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   24篇
  371篇
  2023年   6篇
  2022年   9篇
  2021年   14篇
  2020年   7篇
  2019年   7篇
  2018年   8篇
  2017年   10篇
  2016年   15篇
  2015年   22篇
  2014年   30篇
  2013年   16篇
  2012年   33篇
  2011年   30篇
  2010年   19篇
  2009年   18篇
  2008年   29篇
  2007年   17篇
  2006年   10篇
  2005年   10篇
  2004年   13篇
  2003年   8篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1997年   2篇
  1996年   4篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
  1963年   1篇
  1939年   1篇
排序方式: 共有371条查询结果,搜索用时 15 毫秒
101.
We present a model for the advantage of sexual reproduction in multicellular long-lived species in a world of structured resources in short supply. The model combines features of the Tangled Bank and the Red Queen hypothesis of sexual reproduction and is of broad applicability. The model is ecologically explicit with the dynamics of resources and consumers being modelled by differential equations. The life history of consumers is shaped by body mass-dependent rates as implemented in the metabolic theory of ecology. We find that over a broad range of parameters, sexual reproduction wins despite the two-fold cost of producing males, due to the advantage of producing offspring that can exploit underutilized resources. The advantage is largest when maturation and production of offspring set in before the resources of the parents become depleted, but not too early, due to the cost of producing males. The model thus leads to the dominance of sexual reproduction in multicellular animals living in complex environments, with resource availability being the most important factor affecting survival and reproduction.  相似文献   
102.
The goal of this study was a harmonization of diatom identification and counting among diatomists from the Scandinavian and Baltic countries to improve the comparison of diatom studies in this geographical area. An analysis of the results of 25 diatomists following the European standard EN 14407 during an intercalibration exercise showed that a high similarity was achieved by harmonization and not because of a long experience with diatoms. Sources of error were wrong calibration scales, overlooking of small taxa, especially small Navicula s.l., misidentifications (Eunotia rhomboidea was mistaken for Eunotia incisa) and unclear separation between certain taxa in the identification literature. The latter was discussed during a workshop with focus on the Achnanthes minutissima group, the separation of Fragilaria capucina var. gracilis from F. capucina var. rumpens, and Nitzschia palea var. palea from N. palea var. debilis. The exercise showed also that the Swedish standard diatom method tested here worked fine with acceptable error for the indices IPS (Indice de Polluo-sensibilité Spécifique) and ACID (ACidity Index for Diatoms) when diatomists with a low similarity (Bray–Curtis <60%) with the auditor in at least one of the samples are excluded.  相似文献   
103.

Background  

The Epidermal Growth Factor Receptor (EGFR) activated Extracellular-signal Regulated Kinase (ERK) pathway is a critical cell signalling pathway that relays the signal for a cell to proliferate from the plasma membrane to the nucleus. Deregulation of the EGFR/ERK pathway due to alterations affecting the expression or function of a number of pathway components has long been associated with numerous forms of cancer. Under normal conditions, Epidermal Growth Factor (EGF) stimulates a rapid but transient activation of ERK as the signal is rapidly shutdown. Whereas, under cancerous mutation conditions the ERK signal cannot be shutdown and is sustained resulting in the constitutive activation of ERK and continual cell proliferation. In this study, we have used computational modelling techniques to investigate what effects various cancerous alterations have on the signalling flow through the ERK pathway.  相似文献   
104.
Objective of the study was the investigation of the psychometric properties of a scale derived from the Kiddie-SADS used for a dimensional assessment of externalizing symptoms in children and adolescents. The scale consists of 26 DSM-IV Kiddie-SADS items for attention deficit hyperactivity disorder (ADHD, 18 items) and oppositional defiant disorder (ODD, 8 items). Patients and their mothers were interviewed separately on the patients' symptoms during the last 2 weeks prior to interview. An ADHD-ODD sum score ranging between 0 and 26 was computed reflecting the number of fulfilled diagnostic criteria within the 2-week period under investigation. Interviews were videotaped and re-rated by an independent second rater. Additionally, mothers filled out two questionnaires on their children's symptoms (FBB-HKS, a German ADHD scale based on ICD-10 and DSM-IV criteria; strength and difficulties questionnaire, SDQ). We investigated 59 patients affected by AD(H)D according to DSM-IV recruited from our Department for Child and Adolescent Psychiatry (39 males, 20 females; mean age: M=9.66, SD=2.30). Inter-rater correlation regarding the ADHD-ODD scores was r=0.98 with no significant differences in mean sum scores between rater 1 and rater 2. Internal consistency of the ADHD-ODD scale was 0.85 (Cronbach's alpha). Item difficulties and discriminative power of the items also proved to be adequate. Convergent and discriminant validity were indicated by middle to high correlations with mother-ratings of the children's externalizing symptoms and a low correlation with ratings of internalizing symptoms. Factor analysis revealed a three-factor solution mainly covering inattentive, hyperactive and oppositional symptoms. In summary, ADHD and ODD sections of the Kiddie-SADS allow a reliable and valid dimensional assessment of externalizing symptoms in AD(H)D children and adolescents.  相似文献   
105.
Prey from the decomposer subsystem may help sustain predator populations in arable fields. Adding organic residues to agricultural systems may therefore enhance pest control. We investigated whether resource addition (maize mulch) strengthens aboveground trophic cascades in winter wheat fields. Evaluating the flux of the maize-borne carbon into the food web after 9 months via stable isotope analysis allowed differentiating between prey in predator diets originating from the above- and belowground subsystems. Furthermore, we recorded aphid populations in predator-reduced and control plots of no-mulch and mulch addition treatments. All analyzed soil dwelling species incorporated maize-borne carbon. In contrast, only 2 out of 13 aboveground predator species incorporated maize carbon, suggesting that these 2 predators forage on prey from the above- and belowground systems. Supporting this conclusion, densities of these two predator species were increased in the mulch addition fields. Nitrogen isotope signatures suggested that these generalist predators in part fed on Collembola thereby benefiting indirectly from detrital resources. Increased density of these two predator species was associated by increased aphid control but the identity of predators responsible for aphid control varied in space. One of the three wheat fields studied even lacked aphid control despite of mulch-mediated increased density of generalist predators. The results suggest that detrital subsidies quickly enter belowground food webs but only a few aboveground predator species include prey out of the decomposer system into their diet. Variation in the identity of predator species benefiting from detrital resources between sites suggest that, depending on locality, different predator species are subsidised by prey out of the decomposer system and that these predators contribute to aphid control. Therefore, by engineering the decomposer subsystem via detrital subsidies, biological control by generalist predators may be strengthened.  相似文献   
106.
DcuS is the membrane-integral sensor histidine kinase of the DcuSR two-component system in Escherichia coli that responds to extracellular C4-dicarboxylates. The oligomeric state of full-length DcuS was investigated in vitro and in living cells by chemical cross-linking and by fluorescence resonance energy transfer (FRET) spectroscopy. The FRET results were quantified by an improved method using background-free spectra of living cells for determining FRET efficiency (E) and donor fraction {fD = (donor)/[(donor) + (acceptor)]}. Functional fusions of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) variants of green fluorescent protein to DcuS were used for in vivo FRET measurements. Based on noninteracting membrane proteins and perfectly interacting proteins (a CFP-YFP fusion), the results of FRET of cells coexpressing DcuS-CFP and DcuS-YFP were quantitatively evaluated. In living cells and after reconstitution of purified recombinant DcuS in proteoliposomes, DcuS was found as a dimer or higher oligomer, independent of the presence of an effector. Chemical cross-linking with disuccinimidyl suberate showed tetrameric, in addition to dimeric, DcuS in proteoliposomes and in membranes of bacteria, whereas purified DcuS in nondenaturing detergent was mainly monomeric. The presence and amount of tetrameric DcuS in vivo and in proteoliposomes was not dependent on the concentration of DcuS. Only membrane-embedded DcuS (present in the oligomeric state) is active in (auto)phosphorylation. Overall, the FRET and cross-linking data demonstrate the presence in living cells, in bacterial membranes, and in proteoliposomes of full-length DcuS protein in an oligomeric state, including a tetramer.The DcuSR (dicarboxylate uptake sensor and regulator) system of Escherichia coli is a typical two-component system consisting of a membranous sensor kinase (DcuS) and a cytoplasmic response regulator (DcuR) (11, 26, 48). DcuS responds to C4-dicarboxylates like fumarate, malate, or succinate (19). In the presence of the C4-dicarboxlates, the expression of the genes of anaerobic fumarate respiration (dcuB, fumB, and frdABCD) and of aerobic C4-dicarboxylate uptake (dctA) is activated. DcuS is a histidine protein kinase composed of two transmembrane helices with an intermittent sensory PAS domain in the periplasm (PASP) that was also termed the PDC domain (for PhoQ/DcuS/DctB/CitA domain or fold) (7, 20, 32, 48). The second transmembrane helix is followed by a cytoplasmic PAS domain (PASC) and the C-terminal transmitter domain. PASC functions in signal transfer from transmembrane helix 2 (TM2) to the kinase domain (9). The C-terminal part of the transmitter domain consists of a catalytic or HATPase (histidine kinase/ATPase) subdomain for autophosphorylation of DcuS (16). The N-terminal part of the transmitter contains two conserved α-helical regions, including a conserved His residue which is the site for autophosphorylation. The α-helices serve in dimerization and form a four-helix bundle in the kinase dimer (dimerization and histidine phosphotransfer [DHp] domain) (25, 35, 42, 44).The dimeric sensor kinases have been supposed to phosphorylate mutually, by the catalytic domain of one monomer, the His residue of the partner monomer (10). The oligomeric state of the membrane-bound sensor kinases EnvZ and VirA was also deduced from in vivo complementation studies (31, 46). In addition, signal transduction across the membrane and along cytoplasmic PAS domains appears to be a mechanical process requiring oligomeric proteins (9, 40). Therefore, His kinases are supposed to be dimeric in the functional state, but a higher oligomeric state has not been tested and is conceivable. Only a limited number of membrane-bound sensor kinases have been studied for their oligomerization in their membrane-bound state. Thus, the oligomeric state of the KdpD and TorS sensor kinases of E. coli have been shown to prevail in the detergent-solubilized state as oligomers, presumably dimers (14, 29). There was indirect information that functional DcuS is a dimer as well. Purified DcuS shows kinase activity only after reconstitution into liposomes, and phosphorylation is stimulated by C4-dicarboxylates (16, 19). Detergent-solubilized DcuS, on the other hand, shows no kinase activity, and it was assumed that reconstituted DcuS prevails as a dimer, whereas the inactivation of the detergent-solubilized form is due to monomerization. Recently, it was suggested that autophosphorylation in a sensor kinase of Thermotoga maritima proceeds by a cis mechanism on DHp and catalytic kinase domains within the same monomer (6). The sensor kinase is supposed to prevail as a dimer for reasons of signal transfer to the sensor domain, but the presence of cis phosphorylation principally brings into question the need for dimers for sensor kinase function.Overall, it appears that sensor kinases are oligomers for functional reasons. There is, however, no clear evidence for an oligomeric state of full-length sensor kinases in their membrane-embedded state. Moreover, the studies do not address the question of whether the sensor kinases are dimers or higher oligomers. Therefore, several aspects of the oligomeric state of sensor kinases in vivo in bacterial membranes, that is, before solubilization by detergent, are not clear. In this study, the oligomerization of full-length DcuS was examined in vivo in growing bacteria and in bacterial membranes and in vitro after isolation and reconstitution in liposomes by chemical cross-linking and fluorescence resonance energy transfer (FRET) spectroscopy. FRET techniques have been used widely to study intermolecular interactions of biological molecules (1, 4, 18, 21, 23, 34). The sensitivity of fluorescence allows experiments at low concentrations of native proteins, and genetically generated fusions of DcuS with fluorescent proteins ensure site-specific labeling of DcuS for noninvasive and nondestructive measurements in living cells. In particular, it was investigated whether dimers or higher oligomeric states can be detected for DcuS and whether the oligomerization state depends on function-related parameters.  相似文献   
107.
Barrett esophagus is an epithelial metaplasia that predisposes to adenocarcinoma. Better markers of cancer risk are urgently needed to identify those patients who are likely to benefit most from emerging methods of endoscopic ablation. Disease progression is associated with genomic DNA changes (segmental gains, losses, or loss of heterozygosity). Although these changes are not easily assayed directly, we hypothesized that the underlying DNA damage should activate a DNA damage response (DDR), detectable by immunohistochemical (IHC) assays of checkpoint proteins and the resulting replicative phase cell cycle delays. Surgical specimens and endoscopic biopsies (N = 28) were subjected to IHC for the cell cycle markers cyclin A and phosphorylated histone H3 (P-H3), the DDR markers γH2AX and phosphorylated ATM/ATR substrates (P-ATM/ATRsub), and the DNA damage-responsive tumor suppressors p16 and p53. Correlations were made with histologic diagnoses. The fractions of cells that stained for cyclin A, P-H3, and γH2AX increased in parallel in dysplastic tissue, consistent with checkpoint-mediated cell cycle delays. Foci of nuclear γH2AX and P-ATM/ATRsub were demonstrated by standard and confocal immunofluorescence. Staining for p16 was more prevalent in early-stage disease with lower staining for γH2AX and P-H3. Staining for p53 was moderately increased in some early-stage disease and strongly increased in some advanced disease, consistent with checkpoint-mediated induction and mutational inactivation of p53, respectively. We suggest that IHC for DDR-associated markers may help stratify risk of disease progression in Barrett.  相似文献   
108.
109.
110.
The article discusses new findings on the role of the 4 human WIPI proteins at the onset of macroautophagy/autophagy. New insights revealing a circuit scaffold function of WIPI β-propellers that interconnect autophagy signaling control with appropriate autophagosome formation are summarized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号