首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   16篇
  192篇
  2023年   1篇
  2022年   5篇
  2021年   8篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   11篇
  2015年   15篇
  2014年   13篇
  2013年   12篇
  2012年   16篇
  2011年   18篇
  2010年   8篇
  2009年   11篇
  2008年   13篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有192条查询结果,搜索用时 0 毫秒
71.
The study of protein binding mechanisms is a major topic of research in structural biology. Here, we implement a combination of metrics to systematically assess the cost of backbone conformational changes that protein domains undergo upon association. Through the analyses of 2090 unique unbound → bound transitions, from over 12,000 structures, we show that two-thirds of these proteins do not suffer significant structural changes upon binding, and could thus fit the lock-and-key model well. Among the remaining proteins, one-third explores the bound conformation in the unbound state (conformational selection model) and, while most transitions are possible from an energetic perspective, a few do require external help to break the thermodynamic barrier (induced fit model). We also analyze the relationship between conformational transitions and protein connectivity, finding that, in general, domains interacting with many partners undergo smaller changes upon association, and are less likely to freely explore larger conformational changes.  相似文献   
72.
Biodiversity research rapidly progresses due to the continuous improvement of high-throughput analysis platforms, which facilitate detailed analyses of the composition and architecture of microbial communities in various environmental niches. In the fields of applied forestry and agriculture, microbial communities are also increasingly considered, because they are involved in various kinds of biotic interactions with plants and therefore have high diagnostic value for assessing the health status of plants and soils. While in-depth identification of microbial species in environmental samples is currently achieved by next generation sequencing or microarray techniques, profiling of whole microbial communities can be accomplished via less labor-intensive approaches. We modified the protocol for automated ribosomal intergenic spacer analysis (ARISA) by targeting length polymorphism of the fungal ITS1 rRNA gene for a rapid diagnostic assessment of fungal community composition and surveyed its application spectrum. The approach allowed for spatial and temporal differentiation among fungal assemblages in soil samples and different plant species, and is therefore particularly useful for environmental screening and monitoring projects. Standardized experimental conditions permit the cumulative gathering of data, for instance during long-term projects.  相似文献   
73.
Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p≤5×10−7). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10−8) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p = 2×10−8) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5×10−8; rs1229984-ADH1B, p = 7×10−9; and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.  相似文献   
74.
Drosophila suzukii Matsumura (Diptera: Drosophilidae) is a harmful invasive fruit pest, which is currently spreading in Europe. Since its arrival in 2008, the spotted wing drosophila has caused major losses in several soft-skinned fruit crops. This critical situation urgently requires efficient practices of residue-free pest control. In the present laboratory study, entomopathogenic nematodes (EPNs) were investigated for their ability to infect larvae and pupae of D. suzukii within directly sprayed fruit, fruit placed on soil, and soil. Steinernema feltiae Filipjev (Rhabditida: Steinernematidae), and Steinernema carpocapsae Weiser (Rhabditida: Steinernematidae) were more efficient at infecting soil-pupating host larvae than Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae) at application rates ranging from 25 to 400 EPN cm?2. Applied as a soil drench, S. feltiae and S. carpocapsae were able to infect D. suzukii larvae in the soil as well as hidden inside fruit. Direct application of EPNs on the fruit was less successful, although emergence of flies was significantly reduced.  相似文献   
75.
Genetic variation in the major histocompatibility complex (MHC) affects CD4∶CD8 lineage commitment and MHC expression. However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural genetic variation on MHC expression and CD4∶CD8 lineage commitment using two genetic models in the rat. First, we mapped Quantitative Trait Loci (QTLs) associated with variation in MHC class I and II protein expression and the CD4∶CD8 T cell ratio in outbred Heterogeneous Stock rats. We identified 10 QTLs across the genome and found that QTLs for the individual traits colocalized within a region spanning the MHC. To identify the genes underlying these overlapping QTLs, we generated a large panel of MHC-recombinant congenic strains, and refined the QTLs to two adjacent intervals of ∼0.25 Mb in the MHC-I and II regions, respectively. An interaction between these intervals affected MHC class I expression as well as negative selection and lineage commitment of CD8 single-positive (SP) thymocytes. We mapped this effect to the transporter associated with antigen processing 2 (Tap2) in the MHC-II region and the classical MHC class I gene(s) (RT1-A) in the MHC-I region. This interaction was revealed by a recombination between RT1-A and Tap2, which occurred in 0.2% of the rats. Variants of Tap2 have previously been shown to influence the antigenicity of MHC class I molecules by altering the MHC class I ligandome. Our results show that a restricted peptide repertoire on MHC class I molecules leads to reduced negative selection of CD8SP cells. To our knowledge, this is the first study showing how a recombination between natural alleles of genes in the MHC influences lineage commitment of T cells.  相似文献   
76.
Pathogens or their toxins, including influenza virus, Pseudomonas, and anthrax toxins, require processing by host proprotein convertases (PCs) to enter host cells and to cause disease. Conversely, inhibiting PCs is likely to protect host cells from multiple furin-dependent, but otherwise unrelated, pathogens. To determine if this concept is correct, we designed specific nanomolar inhibitors of PCs modeled from the extended cleavage motif TPQRERRRKKR downward arrowGL of the avian influenza H5N1 hemagglutinin. We then confirmed the efficacy of the inhibitory peptides in vitro against the fluorescent peptide, anthrax protective antigen (PA83), and influenza hemagglutinin substrates and also in mice in vivo against two unrelated toxins, anthrax and Pseudomonas exotoxin. Peptides with Phe/Tyr at P1' were more selective for furin. Peptides with P1' Thr were potent against multiple PCs. Our strategy of basing the peptide sequence on a furin cleavage motif known for an avian flu virus shows the power of starting inhibitor design with a known substrate. Our results confirm that inhibiting furin-like PCs protects the host from the distinct furin-dependent infections and lay a foundation for novel, host cell-focused therapies against acute diseases.  相似文献   
77.
This paper discusses changing patterns of resource utilisation over time in the locality of Chibuene, Vilankulos, situated on the coastal plain of southern Mozambique. The macroscopic charcoal, bone and shell assemblages from archaeological excavations are presented and discussed against the off-site palaeoecological records from pollen, fungal spores and microscopic charcoal. The Chibuene landscape has experienced four phases of land use and resource utilisation that have interacted with changes in the environment. Phase 1 (a.d. 400–900), forest savanna mosaic, low intensity cattle herding and cultivation, trade of resources for domestic use. Phase 2 (a.d. 900–1400), forest savanna mosaic, high intensity/extensive cultivation and cattle herding. Phase 3 (a.d. 1400–1800), savanna woodland and progressive decrease in forests owing to droughts. Decline of agricultural activities and higher reliance on marine resources. Possible trade of resources with the interior. Phase 4 (a.d. 1800–1900), open savanna with few forest patches. Warfare and social unrest. Collapse of trade with the interior. Decline in marine resources and wildlife. Loss of cattle herds. Expansion of agriculture locally and introduction of New World crops and clearing of Brachystegia trees. The study shows the importance of combining different environmental resources for elucidating how land use and natural variability have changed over time.  相似文献   
78.

Background

The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development.

Methodology/Principal Findings

We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping.

Conclusions/Significance

We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries.  相似文献   
79.
Primary Liver Cancer (PLC) is the leading cause of death by cancer among males in Thailand and the 3(rd) among females. Most cases are hepatocellular carcinoma (HCC) but cholangiocarcinomas represent between 4 and 80% of liver cancers depending upon geographic area. Most HCC are associated with chronic infection by Hepatitis B Virus while a G → T mutation at codon 249 of the TP53 gene, R249S, specific for exposure to aflatoxin, is detected in tumors for up to 30% of cases. We have used Short Oligonucleotide Mass Analysis (SOMA) to quantify free circulating R249S-mutated DNA in plasma using blood specimens collected in a hospital case:control study. Plasma R249S-mutated DNA was detectable at low concentrations (≥ 67 copies/mL) in 53 to 64% of patients with primary liver cancer or chronic liver disease and in 19% of controls. 44% of patients with HCC and no evidence of cirrhosis had plasma concentrations of R249S-mutated DNA ≥ 150 copies/mL, compared to 21% in patients with both HCC and cirrhosis, 22% in patients with cholangiocarcinoma, 12% in patients with non-cancer chronic liver disease and 3% of subjects in the reference group. Thus, plasma concentrations of R249S-mutated DNA ≥ 150 copies/mL tended to be more common in patients with HCC developing without pre-existing cirrhosis (p = 0.027). Overall, these results support the preferential occurrence of R249S-mutated DNA in HCC developing in the absence of cirrhosis in a context of HBV chronic infection.  相似文献   
80.
We present the data and the technology, a combination of which allows us to determine the identity of proprotein convertases (PCs) related to the processing of specific protein targets including viral and bacterial pathogens. Our results, which support and extend the data of other laboratories, are required for the design of effective inhibitors of PCs because, in general, an inhibitor design starts with a specific substrate. Seven proteinases of the human PC family cleave the multibasic motifs R-X-(R/K/X)-R downward arrow and, as a result, transform proproteins, including those from pathogens, into biologically active proteins and peptides. The precise cleavage preferences of PCs have not been known in sufficient detail; hence we were unable to determine the relative importance of the individual PCs in infectious diseases, thus making the design of specific inhibitors exceedingly difficult. To determine the cleavage preferences of PCs in more detail, we evaluated the relative efficiency of furin, PC2, PC4, PC5/6, PC7, and PACE4 in cleaving over 100 decapeptide sequences representing the R-X-(R/K/X)-R downward arrow motifs of human, bacterial, and viral proteins. Our computer analysis of the data and the follow-on cleavage analysis of the selected full-length proteins corroborated our initial results thus allowing us to determine the cleavage preferences of the PCs and to suggest which PCs are promising drug targets in infectious diseases. Our results also suggest that pathogens, including anthrax PA83 and the avian influenza A H5N1 (bird flu) hemagglutinin precursor, evolved to be as sensitive to PC proteolysis as the most sensitive normal human proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号