首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   16篇
  185篇
  2023年   1篇
  2022年   5篇
  2021年   8篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   10篇
  2015年   14篇
  2014年   11篇
  2013年   12篇
  2012年   16篇
  2011年   18篇
  2010年   7篇
  2009年   10篇
  2008年   13篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有185条查询结果,搜索用时 15 毫秒
91.
Deep resequencing of functional regions in human genomes is key to identifying potentially causal rare variants for complex disorders. Here, we present the results from a large-sample resequencing (n = 285 patients) study of candidate genes coupled with population genetics and statistical methods to identify rare variants associated with Autism Spectrum Disorder and Schizophrenia. Three genes, MAP1A, GRIN2B, and CACNA1F, were consistently identified by different methods as having significant excess of rare missense mutations in either one or both disease cohorts. In a broader context, we also found that the overall site frequency spectrum of variation in these cases is best explained by population models of both selection and complex demography rather than neutral models or models accounting for complex demography alone. Mutations in the three disease-associated genes explained much of the difference in the overall site frequency spectrum among the cases versus controls. This study demonstrates that genes associated with complex disorders can be mapped using resequencing and analytical methods with sample sizes far smaller than those required by genome-wide association studies. Additionally, our findings support the hypothesis that rare mutations account for a proportion of the phenotypic variance of these complex disorders.  相似文献   
92.
We reported that iron influx drives the translational expression of the neuronal amyloid precursor protein (APP), which has a role in iron efflux. This is via a classic release of repressor interaction of APP mRNA with iron-regulatory protein-1 (IRP1) whereas IRP2 controls the mRNAs encoding the L- and H-subunits of the iron storage protein, ferritin. Here, we identified thirteen potent APP translation blockers that acted selectively towards the uniquely configured iron-responsive element (IRE) RNA stem loop in the 5′ untranslated region (UTR) of APP mRNA. These agents were 10-fold less inhibitory of 5′UTR sequences of the related prion protein (PrP) mRNA. Western blotting confirmed that the ‘ninth’ small molecule in the series selectively reduced neural APP production in SH-SY5Y cells at picomolar concentrations without affecting viability or the expression of α-synuclein and ferritin. APP blocker-9 (JTR-009), a benzimidazole, reduced the production of toxic Aβ in SH-SY5Y neuronal cells to a greater extent than other well tolerated APP 5′UTR-directed translation blockers, including posiphen, that were shown to limit amyloid burden in mouse models of Alzheimer''s disease (AD). RNA binding assays demonstrated that JTR-009 operated by preventing IRP1 from binding to the IRE in APP mRNA, while maintaining IRP1 interaction with the H-ferritin IRE RNA stem loop. Thus, JTR-009 constitutively repressed translation driven by APP 5′UTR sequences. Calcein staining showed that JTR-009 did not indirectly change iron uptake in neuronal cells suggesting a direct interaction with the APP 5′UTR. These studies provide key data to develop small molecules that selectively reduce neural APP and Aβ production at 10-fold lower concentrations than related previously characterized translation blockers. Our data evidenced a novel therapeutic strategy of potential impact for people with trisomy of the APP gene on chromosome 21, which is a phenotype long associated with Down syndrome (DS) that can also cause familial Alzheimer''s disease.  相似文献   
93.
Affibody molecules present a new class of affinity proteins, which utilizes a scaffold based on a 58-amino acid domain derived from protein A. The small (7 kDa) Affibody molecule can be selected to bind to cell-surface targets with high affinity. An Affibody molecule (ZHER2:342) with a dissociation constant (Kd) of 22 pM for binding to the HER2 receptor has been reported earlier. Preclinical and pilot clinical studies have demonstrated the utility of radiolabeled ZHER2:342 in imaging of HER2-expressing tumors. The small size and cysteine-free structure of Affibody molecules enable complete peptide synthesis and direct incorporation of radionuclide chelators. The goal of this study was to evaluate if incorporation of the natural peptide sequences cysteine-diglycine (CGG) and cysteine-triglycine (CGGG) sequences would enable labeling of Affibody molecules with 99mTc. In a model monomeric form, the chelating sequences were incorporated by peptide synthesis. The HER2-binding affinity was 280 and 250 pM for CGG-ZHER2:342 and CGGG-ZHER2:342, respectively. Conjugates were directly labeled with 99mTc with 90% efficiency and preserved the capacity to bind specifically to HER2-expressing cells. The biodistribution in normal mice showed a rapid clearance from the blood and the majority of organs (except kidneys). In the mice bearing SKOV-3 xenografts, tumor uptake of 99mTc-CGG-ZHER2:342 was HER2-specific and a tumor-to-blood ratio of 9.2 was obtained at 6 h postinjection. Gamma-camera imaging with 99mTc-CGG-ZHER2:342 clearly visualized tumors at 6 h postinjection. The results show that the use of a cysteine-based chelator enables 99mTc-labeling of Affibody molecules for imaging.  相似文献   
94.
1. As species are often considered discrete natural units, interspecific sexual interactions are often disregarded as potential factors determining community composition. Nevertheless reproductive interference, ranging from signal jamming to hybridization, can have significant costs for species sharing similar signal channels. 2. We combined laboratory and field experiments to test whether the coexistence of two congeneric ground-hopper species with overlapping ranges might be influenced by sexual interactions. 3. In the laboratory experiment the number of conspecific copulations of Tetrix ceperoi decreased substantially in the presence of Tetrix subulata. Males of T. ceperoi performed more mating attempts with heterospecific females, whereas females of T. subulata rejected these heterospecific approaches more often than those of conspecifics. Although no heterospecific matings occurred in the laboratory, the reproductive success of T. ceperoi was reduced substantially in field experiments. Negative effects on T. subulata were found only at high densities. 4. Our results suggest that reproductive interference could have similar consequences as competition, such as demographic displacement of one species ('sexual exclusion'). As reproductive interference should be selected against, it may also drive the evolution of signals (reproductive character displacement) or promote habitat, spatial or temporal segregation.  相似文献   
95.
To investigate how exudation shapes root‐associated bacterial populations, transgenic Arabidopsis thaliana plants that exuded the xenotopic compound octopine at low and high rates were grown in a nonsterile soil. Enumerations of both cultivable and octopine‐degrading bacteria demonstrated that the ratios of octopine degraders increased along with octopine concentration. An artificial exudation system was also set up in which octopine was brought at four ratios. The density of octopine‐degrading bacteria directly correlated with the input of octopine. Bacterial diversity was analysed by rrs amplicon pyrosequencing. Ensifer and Pseudomonas were significantly more frequently detected in soil amended with artificial exudates. However, the density of Pseudomonas increased as a response to carbon supplementation while that of Ensifer only correlated with octopine concentrations possibly in relation to two opposed colonization strategies of rhizosphere bacteria, that is, copiotrophy and oligotrophy.  相似文献   
96.

Background  

The motor neuron degenerative disease spinal muscular atrophy (SMA) is the leading genetic cause of infant mortality and is caused by mutations in the survival of motor neurons (SMN) gene that reduce the expression levels of the SMN protein. A major goal of current therapeutic approaches is to increase SMN levels in SMA patients. The purpose of this study was to develop a reliable assay to measure SMN protein levels from peripheral blood samples.  相似文献   
97.
Cancer has surpassed heart disease as the leading cause of death among Hispanics in the U.S., yet data on cancer prevalence and risk factors in Hispanics in regard to ancestry remain scarce. This study sought to describe (a) the prevalence of cancer among Hispanics from four major U.S. metropolitan areas, (b) cancer prevalence across Hispanic ancestry, and (c) identify correlates of self-reported cancer prevalence. Participants were 16,415 individuals from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), who self-identified as Cuban, Dominican, Mexican, Puerto Rican, Central or South American. All data were collected at a single time point during the HCHS/SOL baseline clinic visit. The overall self-reported prevalence rate of cancer for the population was 4%. The rates varied by Hispanic ancestry group, with individuals of Cuban and Puerto Rican ancestry reporting the highest cancer prevalence. For the entire population, older age (OR = 1.47, p < .001, 95% CI, 1.26–1.71) and having health insurance (OR = 1.93, p < .001, 95% CI, 1.42–2.62) were all significantly associated with greater prevalence, whereas male sex was associated with lower prevalence (OR = 0.56, p < .01, 95% CI, .40-.79). Associations between study covariates and cancer prevalence also varied by Hispanic ancestry. Findings underscore the importance of sociodemographic factors and health insurance in relation to cancer prevalence for Hispanics and highlight variations in cancer prevalence across Hispanic ancestry groups. Characterizing differences in cancer prevalence rates and their correlates is critical to the development and implementation of effective prevention strategies across distinct Hispanic ancestry groups.  相似文献   
98.
99.
100.
Capillary biofilm reactors (CBRs) are attractive for growing photoautotrophic bacteria as they allow high cell-density cultivation. Here, we evaluated the CBR system's suitability to grow an artificial consortium composed of Synechocystis sp. PCC 6803 and Pseudomonas sp. VBL120. The impact of reactor material, flow rate, pH, O2, and medium composition on biomass development and long-term biofilm stability at different reactor scales was studied. Silicone was superior over other materials like glass or PVC due to its excellent O2 permeability. High flow rates of 520 μL min−1 prevented biofilm sloughing in 1 m capillary reactors, leading to a 54% higher biomass dry weight combined with the lowest O2 concentration inside the reactor compared to standard operating conditions. Further increase in reactor length to 5 m revealed a limitation in trace elements. Increasing trace elements by a factor of five allowed for complete surface coverage with a biomass dry weight of 36.8 g m−2 and, thus, a successful CBR scale-up by a factor of 25. Practical application : Cyanobacteria use light energy to upgrade CO2, thereby holding the potential for carbon-neutral production processes. One of the persisting challenges is low cell density due to light limitations and O2 accumulation often occurring in established flat panel or tubular photobioreactors. Compared to planktonic cultures, much higher cell densities (factor 10 to 100) can be obtained in cyanobacterial biofilms. The capillary biofilm reactor (CBR) offers good growth conditions for cyanobacterial biofilms, but its applicability has been shown only on the laboratory scale. Here, a first scale-up study based on sizing up was performed, testing the feasibility of this system for large-scale applications. We demonstrate that by optimizing nutrient supply and flow conditions, the system could be enlarged by factor 25 by enhancing the length of the reactor. This reactor concept, combined with cyanobacterial biofilms and numbering up, holds the potential to be applied as a flexible, carbon-neutral production platform for value-added compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号