首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   16篇
  2023年   1篇
  2022年   5篇
  2021年   8篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   7篇
  2016年   10篇
  2015年   14篇
  2014年   11篇
  2013年   12篇
  2012年   16篇
  2011年   18篇
  2010年   7篇
  2009年   10篇
  2008年   13篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1989年   2篇
  1986年   2篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有185条查询结果,搜索用时 296 毫秒
161.
Platelet-activating factor (PAF) is a phospholipid with potent and diverse physiological actions, particularly as a mediator of inflammation. We have reported previously that mutant G protein-coupled receptors (GPCRs) affect the functional properties of coexpressed wild-type human PAF receptor (hPAFR) (Le Gouill, C., Parent, J. L., Caron, C. A., Gaudreau, R., Volkov, L., Rola-Pleszczynski, M., and Stankova, J. (1999) J. Biol. Chem. 274, 12548-12554). Increasing evidence suggests that dimerization of GPCRs may play an important role in the regulation of their biological activity. Additional data have also suggested that dimerization may be important in the subsequent internalization of the delta-opioid receptor. To investigate the specific role of dimerization in the internalization process of GPCRs, we generated a fusion protein of hPAFR and bacterial DNA gyrase B (GyrB), dimerized through the addition of coumermycin. We found that dimerization potentiates PAF-induced internalization of hPAFR-GyrB in Chinese hamster ovary cells stably expressing c-Myc-hPAFR-GyrB. Coumermycin-driven dimerization was also sufficient to induce an agonist-independent sequestration process in an arrestin- and clathrin-independent manner. Moreover, the protein kinase C inhibitors staurosporine and GF109203X blocked the coumermycin-induced desensitization of hPAFR-GyrB, suggesting the implication of protein kinase C in the molecular mechanism mediating the agonist-independent desensitization of the receptor. Taken together, these findings suggest a novel mechanism of GPCR desensitization and internalization triggered by dimerization.  相似文献   
162.
163.
Polymorphonuclear neutrophils (PMNs) form the first line of defense against invading microorganisms. We have shown previously that ATP release and autocrine purinergic signaling via P2Y2 receptors are essential for PMN activation. Here we show that mitochondria provide the ATP that initiates PMN activation. Stimulation of formyl peptide receptors increases the mitochondrial membrane potential (Δψm) and triggers a rapid burst of ATP release from PMNs. This burst of ATP release can be blocked by inhibitors of mitochondrial ATP production and requires an initial formyl peptide receptor-induced Ca2+ signal that triggers mitochondrial activation. The burst of ATP release generated by the mitochondria fuels a first phase of purinergic signaling that boosts Ca2+ signaling, amplifies mitochondrial ATP production, and initiates functional PMN responses. Cells then switch to glycolytic ATP production, which fuels a second round of purinergic signaling that sustains Ca2+ signaling via P2X receptor-mediated Ca2+ influx and maintains functional PMN responses such as oxidative burst, degranulation, and phagocytosis.  相似文献   
164.
Primary cilia are assembled and maintained by evolutionarily conserved intraflagellar transport (IFT) proteins that are involved in the coordinated movement of macromolecular cargo from the basal body to the cilium tip and back. The IFT machinery is organized in two structural complexes named complex A and complex B. Recently, inactivation in the mouse germline of Ift genes belonging to complex B revealed a requirement of ciliogenesis, or proteins involved in ciliogenesis, for Sonic Hedgehog (Shh) signaling in mammals. Here we report on a complex A mutant mouse, defective for the Ift122 gene. Ift122-null embryos show multiple developmental defects (exencephaly, situs viscerum inversus, delay in turning, hemorrhage and defects in limb development) that result in lethality. In the node, primary cilia were absent or malformed in homozygous mutant and heterozygous embryos, respectively. Impairment of the Shh pathway was apparent in both neural tube patterning (expansion of motoneurons and rostro-caudal level-dependent contraction or expansion of the dorso-lateral interneurons), and limb patterning (ectrosyndactyly). These phenotypes are distinct from both complex B IFT mutant embryos and embryos defective for the ciliary protein hennin/Arl13b, and suggest reduced levels of both Gli2/Gli3 activator and Gli3 repressor functions. We conclude that complex A and complex B factors play similar but distinct roles in ciliogenesis and Shh/Gli3 signaling.  相似文献   
165.
166.
Uncovering new substrates for Aurora A kinase   总被引:1,自引:0,他引:1  
Sardon T  Pache RA  Stein A  Molina H  Vernos I  Aloy P 《EMBO reports》2010,11(12):977-984
Aurora A is a serine/threonine kinase that is essential for a wide variety of cell-cycle-related events, but only a small number of its substrates are known. We present and validate a strategy by which to identify Aurora A substrates and their phosphorylation sites. We developed a computational approach integrating various types of biological information to generate a list of 90 potential Aurora substrates, with a prediction accuracy of about 80%. We also demonstrated the specific phosphorylation of NUSAP (nucleolar and spindle-associated protein) by Aurora A in vivo. Our results provide a means by which to develop an understanding of Aurora A function and suggest unexpected roles for this kinase.  相似文献   
167.
Pathogenic generation of amyloid β-peptide (Aβ) by sequential cleavage of β-amyloid precursor protein (APP) by β- and γ-secretases is widely believed to causally underlie Alzheimer disease (AD). β-Secretase initially cleaves APP thereby generating a membrane-bound APP C-terminal fragment, from which γ-secretase subsequently liberates 37-43-amino acid long Aβ species. Although the latter cleavages are intramembranous and although lipid alterations have been implicated in AD, little is known of how the γ-secretase-mediated release of the various Aβ species, in particular that of the pathogenic longer variants Aβ(42) and Aβ(43), is affected by the lipid environment. Using a cell-free system, we have directly and systematically investigated the activity of γ-secretase reconstituted in defined model membranes of different thicknesses. We found that bilayer thickness is a critical parameter affecting both total activity as well as cleavage specificity of γ-secretase. Whereas the generation of the pathogenic Aβ(42/43) species was markedly attenuated in thick membranes, that of the major and rather benign Aβ(40) species was enhanced. Moreover, the increased production of Aβ(42/43) by familial AD mutants of presenilin 1, the catalytic subunit of γ-secretase, could be substantially lowered in thick membranes. Our data demonstrate an effective modulation of γ-secretase activity by membrane thickness, which may provide an approach to lower the generation of the pathogenic Aβ(42/43) species.  相似文献   
168.
Affibody molecules are a class of affinity proteins. Their small size (7 kDa) in combination with the high (subnanomolar) affinity for a number of cancer-associated molecular targets makes them suitable for molecular imaging. Earlier studies demonstrated that the selection of radionuclide and chelator may substantially influence the tumor-targeting properties of affibody molecules. Moreover, the placement of chelators for labeling of affibody molecules with (99m)Tc at different positions in affibody molecules influenced both blood clearance rate and uptake in healthy tissues. This introduces an opportunity to improve the contrast of affibody-mediated imaging. In this comparative study, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was conjugated to the synthetic affibody molecule Z(HER2:S1) at three different positions: DOTA-A1-Z(HER2:S1) (N-terminus), DOTA-K58-Z(HER2:S1) (C-terminus), and DOTA-K50-Z(HER2:S1) (middle of helix 3). The affinity for HER2 differed slightly among the variants and the K(D) values were determined to be 133 pM, 107 pM and 94 pM for DOTA-A1-Z(HER2:S1), DOTA-K50-Z(HER2:S1), and DOTA-K58-Z(HER2:S1), respectively. Z(HER2:S1)-K50-DOTA showed a slightly lower melting point (57 °C) compared to DOTA-A1-Z(HER2:S1) (64 °C) and DOTA-K58-Z(HER2:S1) (62 °C), but all variants showed good refolding properties after heat treatment. All conjugates were successfully labeled with (111)In resulting in a radiochemical yield of 99% with preserved binding capacity. In vitro specificity studies using SKOV-3 and LS174T cell lines showed that the binding of the radiolabeled compounds was HER2 receptor-mediated, which also was verified in vivo using BALB/C nu/nu mice with LS174T and Ramos lymphoma xenografts. The three conjugates all showed specific uptake in LS174T xenografts in nude mice, where DOTA-A1-Z(HER2:S1)and DOTA-K58-Z(HER2:S1) showed the highest uptake. Overall, DOTA-K58-Z(HER2:S1) provided the highest tumor-to-blood ratio, which is important for a high-contrast imaging. In conclusion, the positioning of the DOTA chelator influences the cellular processing and the biodistribution pattern of radiolabeled affibody molecules, creating preconditions for imaging optimization.  相似文献   
169.
Doxorubicin (DOX) is a common drug in cancer chemotherapy, and its high DNA-binding affinity can be harnessed in preparing DOX-loaded DNA nanostructures for targeted delivery and therapeutics. Although DOX has been widely studied, the existing literature of DOX-loaded DNA-carriers remains limited and incoherent. Here, based on an in-depth spectroscopic analysis, we characterize and optimize the DOX loading into different 2D and 3D scaffolded DNA origami nanostructures (DONs). In our experimental conditions, all DONs show similar DOX binding capacities (one DOX molecule per two to three base pairs), and the binding equilibrium is reached within seconds, remarkably faster than previously acknowledged. To characterize drug release profiles, DON degradation and DOX release from the complexes upon DNase I digestion was studied. For the employed DONs, the relative doses (DOX molecules released per unit time) may vary by two orders of magnitude depending on the DON superstructure. In addition, we identify DOX aggregation mechanisms and spectral changes linked to pH, magnesium, and DOX concentration. These features have been largely ignored in experimenting with DNA nanostructures, but are probably the major sources of the incoherence of the experimental results so far. Therefore, we believe this work can act as a guide to tailoring the release profiles and developing better drug delivery systems based on DNA-carriers.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号