首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   25篇
  2023年   1篇
  2022年   5篇
  2021年   13篇
  2020年   9篇
  2019年   9篇
  2018年   8篇
  2017年   9篇
  2016年   22篇
  2015年   22篇
  2014年   16篇
  2013年   27篇
  2012年   33篇
  2011年   30篇
  2010年   14篇
  2009年   20篇
  2008年   23篇
  2007年   17篇
  2006年   12篇
  2005年   14篇
  2004年   9篇
  2003年   11篇
  2002年   10篇
  2001年   9篇
  2000年   6篇
  1999年   9篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   9篇
  1988年   3篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   3篇
  1978年   4篇
  1977年   1篇
  1974年   1篇
  1973年   5篇
  1972年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有421条查询结果,搜索用时 15 毫秒
161.
The epidermis is a stratified, continually renewing epithelium dependent on a balance among cell proliferation, differentiation, and death for homeostasis. In normal epidermis, a mitotically active basal layer gives rise to terminally differentiating keratinocytes that migrate outward and are ultimately sloughed from the skin surface as enucleated squames. Although many proteins are known to function in maintaining epidermal homeostasis, the molecular coordination of these events is poorly understood. RIP4 is a novel RIP (receptor-interacting protein) family kinase with ankyrin repeats cloned from a keratinocyte cDNA library. RIP4 deficiency in mice results in perinatal lethality associated with abnormal epidermal differentiation. The phenotype of RIP4(-/-) mice in part resembles that of mice lacking IKKalpha, a component of a complex that regulates NF-kappaB. Despite the similar keratinocyte defects in RIP4- and IKKalpha-deficient mice, these kinases function in distinct pathways. RIP4 functions cell autonomously within the keratinocyte lineage. Unlike IKKalpha, RIP4-deficient skin fails to fully differentiate when grafted onto a normal host. Instead, abnormal hair follicle development and epidermal dysplasia, indicative of progression into a more pathologic state, are observed. Thus, RIP4 is a critical component of a novel pathway that controls keratinocyte differentiation.  相似文献   
162.

Background

Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests.

Methods and Findings

In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87).

Conclusions

Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is necessary to extend these concepts into clinical practice. Please see later in the article for the Editors'' Summary  相似文献   
163.
Hemolymph metabolite composition in ectothermic species is mainly constrained by trophic and climatic habitat conditions. In temperate regions, ectothermic species have to face subzero temperatures in winter, to which they typically respond with a state of inactivity. With use of ultra-performance liquid chromatography and gas chromatography-mass spectrometry techniques, we investigated the hemolymph metabolite composition of the land snail Helix pomatia with respect to physiological states (activity and hibernation) in a mountain population (800 m above sea level) and a valley population (150 m above sea level) in Germany. The dry masses of active snails as well as the saccharide and amino acid concentrations in active snails were higher in the mountain population than in the valley population. These differences between populations might reflect differences in microhabitat conditions, such as climate and vegetal food, and consequent differences in metabolic activity. Galactose was the most abundant component in hemolymph besides glucose. Both saccharides might indicate glycolytic activity, which could provide energy for locomotion and foraging. In hibernation, glutamate, α-alanine, glycine, aspartate, serine, homoserine, hydroxyproline, glycerol, and triglycerides were accumulated in both populations. The concentrations were correlated with a decrease in body supercooling point. Therefore, these metabolites might have a role in the cold hardiness of H. pomatia that should be further investigated in a functional study.  相似文献   
164.

Background

The CXCL12/CXCR4 axis is involved in kidney development by regulating formation of the glomerular tuft. Recently, a second CXCL12 receptor was identified and designated CXCR7. Although it is established that CXCR7 regulates heart and brain development in conjunction with CXCL12 and CXCR4, little is known about the influence of CXCR7 on CXCL12 dependent kidney development.

Methodology/Principal Findings

We provided analysis of CXCR7 expression and function in the developing mouse kidney. Using in situ hybridization, we identified CXCR7 mRNA in epithelial cells including podocytes at all nephron stages up to the mature glomerulus. CXCL12 mRNA showed a striking overlap with CXCR7 mRNA in epithelial structures. In addition, CXCL12 was detected in stromal cells and the glomerular tuft. Expression of CXCR4 was complementary to that of CXCR7 as it occurred in mesenchymal cells, outgrowing ureteric buds and glomerular endothelial cells but not in podocytes. Kidney examination in CXCR7 null mice revealed ballooning of glomerular capillaries as described earlier for CXCR4 null mice. Moreover, we detected a severe reduction of CXCR4 protein but not CXCR4 mRNA within the glomerular tuft and in the condensed mesenchyme. Malformation of the glomerular tuft in CXCR7 null mice was associated with mesangial cell clumping.

Conclusions/Significance

We established that there is a similar glomerular pathology in CXCR7 and CXCR4 null embryos. Based on the phenotype and the anatomical organization of the CXCL12/CXCR4/CXCR7 system in the forming glomerulus, we propose that CXCR7 fine-tunes CXCL12/CXCR4 mediated signalling between podocytes and glomerular capillaries.  相似文献   
165.
Primary Liver Cancer (PLC) is the leading cause of death by cancer among males in Thailand and the 3(rd) among females. Most cases are hepatocellular carcinoma (HCC) but cholangiocarcinomas represent between 4 and 80% of liver cancers depending upon geographic area. Most HCC are associated with chronic infection by Hepatitis B Virus while a G → T mutation at codon 249 of the TP53 gene, R249S, specific for exposure to aflatoxin, is detected in tumors for up to 30% of cases. We have used Short Oligonucleotide Mass Analysis (SOMA) to quantify free circulating R249S-mutated DNA in plasma using blood specimens collected in a hospital case:control study. Plasma R249S-mutated DNA was detectable at low concentrations (≥ 67 copies/mL) in 53 to 64% of patients with primary liver cancer or chronic liver disease and in 19% of controls. 44% of patients with HCC and no evidence of cirrhosis had plasma concentrations of R249S-mutated DNA ≥ 150 copies/mL, compared to 21% in patients with both HCC and cirrhosis, 22% in patients with cholangiocarcinoma, 12% in patients with non-cancer chronic liver disease and 3% of subjects in the reference group. Thus, plasma concentrations of R249S-mutated DNA ≥ 150 copies/mL tended to be more common in patients with HCC developing without pre-existing cirrhosis (p = 0.027). Overall, these results support the preferential occurrence of R249S-mutated DNA in HCC developing in the absence of cirrhosis in a context of HBV chronic infection.  相似文献   
166.
Brown algae are multicellular photosynthetic marine organisms, ubiquitous on rocky intertidal shores at cold and temperate latitudes. Nevertheless, little is known about many aspects of their biology, particularly their development. Given their phylogenetic distance (1.6 billion years) from other plant organisms (land plants, and green and red algae), brown algae harbor a high, as-yet undiscovered diversity of biological mechanisms governing their development. They also show great morphological plasticity, responding to specific environmental constraints, such as sea currents, reduced light availability, grazer attacks, desiccation and UV exposure. Here, we show that brown algal morphogenesis is rather simple and flexible, and review recent genomic data on the cellular and molecular mechanisms known to date that can possibly account for this developmental strategy.  相似文献   
167.
The production of cysteine protease by two human osteosarcoma cell lines (MG-63 and SaOS2) was analyzed, as well as their modulation by interleukin 1beta (hIL-1 beta), interleukin 6 (hIL-6), insulin growth factor-1 (hIGF-1), oncostatin M (hOSM), leukemia inhibitory factor (hLIF) and growth hormone (hGH). Cysteine protease activities were detected using a synthetic substrate. The protease activities (especially cathepsin L activity) of both cell lines were increased significantly in the presence of hIL-1 beta, hIL-6 and hOSM. In contrast, hIGF-1 and hGH decreased these activities, and no effect was detectable in the presence of hLIF. The addition of antibodies against the gp-130 chain of the hIL-6 and hOSM receptors totally inhibited the stimulating effect of these two cytokines on cysteine protease activities. In increasing collagen type I degradation, hIL-1beta, hIL-6 and hOSM could be involved in bone resorption, whereas the inhibitory action of hIGF-1 and hGH on collagen type I degradation suggest that this factor could play a role in bone formation.  相似文献   
168.
Understanding the principles of calmodulin (CaM) activation of target enzymes will help delineate how this seemingly simple molecule can play such a complex role in transducing Ca (2+)-signals to a variety of downstream pathways. In the work reported here, we use biochemical and biophysical tools and a panel of CaM constructs to examine the lobe specific interactions between CaM and CaMKII necessary for the activation and autophosphorylation of the enzyme. Interestingly, the N-terminal lobe of CaM by itself was able to partially activate and allow autophosphorylation of CaMKII while the C-terminal lobe was inactive. When used together, CaMN and CaMC produced maximal CaMKII activation and autophosphorylation. Moreover, CaMNN and CaMCC (chimeras of the two N- or C-terminal lobes) both activated the kinase but with greater K act than for wtCaM. Isothermal titration calorimetry experiments showed the same rank order of affinities of wtCaM > CaMNN > CaMCC as those determined in the activity assay and that the CaM to CaMKII subunit binding ratio was 1:1. Together, our results lead to a proposed sequential mechanism to describe the activation pathway of CaMKII led by binding of the N-lobe followed by the C-lobe. This mechanism contrasts the typical sequential binding mode of CaM with other CaM-dependent enzymes, where the C-lobe of CaM binds first. The consequence of such lobe specific binding mechanisms is discussed in relation to the differential rates of Ca (2+)-binding to each lobe of CaM during intracellular Ca (2+) oscillations.  相似文献   
169.
We present the data and the technology, a combination of which allows us to determine the identity of proprotein convertases (PCs) related to the processing of specific protein targets including viral and bacterial pathogens. Our results, which support and extend the data of other laboratories, are required for the design of effective inhibitors of PCs because, in general, an inhibitor design starts with a specific substrate. Seven proteinases of the human PC family cleave the multibasic motifs R-X-(R/K/X)-R downward arrow and, as a result, transform proproteins, including those from pathogens, into biologically active proteins and peptides. The precise cleavage preferences of PCs have not been known in sufficient detail; hence we were unable to determine the relative importance of the individual PCs in infectious diseases, thus making the design of specific inhibitors exceedingly difficult. To determine the cleavage preferences of PCs in more detail, we evaluated the relative efficiency of furin, PC2, PC4, PC5/6, PC7, and PACE4 in cleaving over 100 decapeptide sequences representing the R-X-(R/K/X)-R downward arrow motifs of human, bacterial, and viral proteins. Our computer analysis of the data and the follow-on cleavage analysis of the selected full-length proteins corroborated our initial results thus allowing us to determine the cleavage preferences of the PCs and to suggest which PCs are promising drug targets in infectious diseases. Our results also suggest that pathogens, including anthrax PA83 and the avian influenza A H5N1 (bird flu) hemagglutinin precursor, evolved to be as sensitive to PC proteolysis as the most sensitive normal human proteins.  相似文献   
170.
Proteomics discovery leads to a list of potential protein biomarkers that have to be subsequently verified and validated with a statistically viable number of patients. Although the most sensitive, the development of an ELISA test is time-consuming when antibodies are not available and need to be conceived. Mass spectrometry analysis driven in quantitative multiple reaction monitoring mode is now appearing as a promising alternative to quantify proteins in biological fluids. However, all the studies published to date describe limits of quantitation in the low μg/ml range when no immunoenrichment of the target protein is applied, whereas the concentration of known clinical biomarkers is usually in the ng/ml range. Using prostate-specific antigen as a model biomarker, we now provide proof of principle that mass spectrometry enables protein quantitation in a concentration range of clinical interest without immunoenrichment. We have developed and optimized a robust sample processing method combining albumin depletion, trypsin digestion, and solid phase extraction of the proteotypic peptides starting from only 100 μl of serum. For analysis, mass spectrometry was coupled to a conventional liquid chromatography system using a 2-mm-internal diameter reverse phase column. This mass spectrometry-based strategy was applied to the quantitation of prostate-specific antigen in sera of patients with either benign prostate hyperplasia or prostate cancer. The quantitation was performed against an external calibration curve by interpolation, and results showed good correlation with existing ELISA tests applied to the same samples. This strategy might now be implemented in any clinical laboratory or certified company for further evaluation of any putative biomarker in the low ng/ml range of serum or plasma.Used for years across a wide range of pathologies, proteomics studies based on semiquantitative mass spectrometry of proteins have already led to the discovery of numerous protein biomarker candidates. Often tens of putative biomarkers have been described for a single disease, but the subsequent phase of clinical evaluation on large cohorts for each candidate is clearly the bottleneck as revealed by the meager number of newly approved biomarkers for clinical use. One of the critical limitations of discovery work flows arises when no antibody is available to initiate an immunoassay because 1–3 years are required to conceive de novo a reliable immunoassay. Such a delay is a serious drawback when tens of putative markers are concerned. Quantitation of small organic molecules by mass spectrometry has been used extensively for years in the field of environmental contaminant analysis or pharmacokinetic profiling of drug candidates during clinical studies. More recently, absolute quantitation of proteins using mass spectrometry by single (SRM)1 or multiple reaction monitoring (MRM) and stable isotope dilution has thus naturally emerged as an alternative to immunoassays. Basically the absolute quantitation of a protein is provided by the integration of the specific MRM signals corresponding, respectively, to a proteotypic peptide (1) obtained from enzymatic hydrolysis of the target protein (usually by trypsin) and to its synthetic stable isotope-labeled isotopomer (2). The validation criteria of an MS-based method in terms of accuracy and precision are relatively easy to fulfill when addressing small molecules or proteins below 10 kDa in plasma or serum. Indeed they may be easily extracted from the bulk of high molecular mass proteins simply by selective precipitation. The quantitation of higher molecular mass proteins has proven to be more challenging because of the complexity and large dynamic range of proteins in e.g. plasma. In a pioneering study Anderson and Hunter (3) successfully demonstrated generation of a multiplexed assay for proteins covering high (tens to hundreds of micrograms/milliliter) to medium (hundreds of nanograms/milliliter to a few micrograms/milliliter) abundance ranges in plasma when combined with immunodepletion. However, these ranges remain problematic because clinically relevant biomarkers are usually present in plasma or serum in the low nanogram/milliliter range or below. To significantly improve the limit of quantitation (LOQ) of LC-MRM mass spectrometry, Keshishian et al. (4) evaluated a combination of immunodepletion of the most abundant plasma or serum proteins with strong cation exchange (SCX) chromatography for sample preparation prior to LC-MRM analysis. LOQs in the 1–10 ng/ml range were obtained with a coefficient of variation from 3 to 15% for five exogenous non-human proteins and the human prostate-specific antigen (PSA) protein spiked together into immunodepleted plasma from a healthy female donor. Very recently, a new approach using product ion scanning on a linear ion trap was proposed by Diamandis and co-workers (5) that allowed reaching a limit of quantitation of 1 ng/ml for PSA spiked into control plasma. This study marked a gain in sensitivity compared with previous attempts by others on similar instrumentation (69) but applied immunopurification of the target protein.Interestingly all the strategies published to date have been dealing with analytical development of work flows for the validation of biomarker candidates using microbore, nanoflow chromatography. Nanoflow is without any doubt appealing over conventional microflow during the proteomics discovery phase when the amount of biological material, for instance from a tumor biopsy, is often limited. Nonetheless this technique inherently still suffers from a lack of robustness and requires skilled personnel to be operational on a daily basis. As a consequence, nanoflow chromatography is not easily adaptable for the high throughput analysis environment encountered in clinical laboratories or good laboratory practice-certified or contract research organization companies where hundreds of samples are handled per day. In such organizations only microflow separations using 1- or 2-mm-internal diameter HPLC columns are compatible with the requirements of robustness and sample throughput.Therefore, the present work was centered on how a simple work flow could, in the near future, enable the large scale verification phase of putative biomarkers in the ng/ml of plasma range by the use of conventional LC equipment, i.e. using a 2-mm-internal diameter HPLC column. To address this question, we have considered that the absolute quantitation of PSA in true clinical samples could represent a challenging model. Combining immunodepletion of serum albumin and peptide fractionation simply by solid phase extraction (SPE), we were able to demonstrate for the first time the absolute quantitation of PSA by LC-MRM mass spectrometry in clinical serum samples of patients with benign prostate hyperplasia (BPH) or prostate cancer (PCa) within concentrations ranging from 4 to 30 ng/ml. Furthermore a good correlation was observed between the clinical ELISA tests and the mass spectrometry-based assays. We believe that these results are an unprecedented demonstration that the clinical relevance of putative biomarkers issued from proteomics investigation may now be confidently evaluated in the ng/ml range by robust coupling between conventional bore LC and mass spectrometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号