首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   791篇
  免费   52篇
  843篇
  2023年   7篇
  2022年   19篇
  2021年   30篇
  2020年   19篇
  2019年   16篇
  2018年   15篇
  2017年   10篇
  2016年   27篇
  2015年   52篇
  2014年   51篇
  2013年   51篇
  2012年   46篇
  2011年   69篇
  2010年   41篇
  2009年   40篇
  2008年   49篇
  2007年   51篇
  2006年   39篇
  2005年   34篇
  2004年   25篇
  2003年   24篇
  2002年   19篇
  2001年   5篇
  2000年   5篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   7篇
  1991年   7篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1969年   3篇
  1966年   2篇
  1961年   3篇
  1960年   2篇
  1926年   1篇
排序方式: 共有843条查询结果,搜索用时 0 毫秒
181.
Ecosystems globally are undergoing rapid changes in elemental inputs. Because nutrient inputs differently impact high‐ and low‐fertility systems, building a predictive framework for the impacts of anthropogenic and natural changes on ecological stoichiometry requires examining the flexibility in stoichiometric responses across a range of basal nutrient richness. Whether organisms or communities respond to changing conditions with stoichiometric homeostasis or flexibility is strongly regulated by their species‐specific capacity for nutrient storage, relative growth rate, physiological plasticity, and the degree of environmental resource availability relative to organismal demand. Using a meta‐analysis approach, we tested whether stoichiometric flexibility following nutrient enrichment correlates with the relative fertility of terrestrial and aquatic systems or with the initial stoichiometries of the organism or community. We found that regardless of limitation status, N‐fertilization tended to significantly reduce biota C:N and increase N:P, and P fertilization reduced C:P and N:P in both terrestrial and aquatic systems. Further, stoichiometric flexibility in response to fertilization tended to decrease as environmental nutrient richness increased in both terrestrial and aquatic systems. Positive correlations were also detected between the initial biota C:nutrient ratio and stoichiometric flexibility in response to fertilization. Elucidating these relationships between stoichiometric flexibility, basal environmental and biota fertility, and fertilization will increase our understanding of the ecological consequences of ongoing nutrient enrichment across the world.  相似文献   
182.
183.
184.
Macrophages contribute to tissue homeostasis and influence inflammatory responses by modulating their phenotype in response to the local environment. Understanding the molecular mechanisms governing this plasticity would open new avenues for the treatment for inflammatory disorders. We show that deletion of calcineurin (CN) or its inhibition with LxVP peptide in macrophages induces an anti‐inflammatory population that confers resistance to arthritis and contact hypersensitivity. Transfer of CN‐targeted macrophages or direct injection of LxVP‐encoding lentivirus has anti‐inflammatory effects in these models. Specific CN targeting in macrophages induces p38 MAPK activity by downregulating MKP‐1 expression. However, pharmacological CN inhibition with cyclosporin A (CsA) or FK506 did not reproduce these effects and failed to induce p38 activity. The CN‐inhibitory peptide VIVIT also failed to reproduce the effects of LxVP. p38 inhibition prevented the anti‐inflammatory phenotype of CN‐targeted macrophages, and mice with defective p38‐activation were resistant to the anti‐inflammatory effect of LxVP. Our results identify a key role for CN and p38 in the modulation of macrophage phenotype and suggest an alternative treatment for inflammation based on redirecting macrophages toward an anti‐inflammatory status.  相似文献   
185.
186.
Dental-pulp tissue is often exposed to inflammatory injury. Sequested growth factors or angiogenic signaling proteins that are released following inflammatory injury play a pivotal role in the formation of reparative dentin. While limited or moderate angiogenesis may be helpful for dental pulp maintenance, the induction of significant level of angiogenesis is probably highly detrimental. Hitherto, several studies have addressed the effects of proinflammatory stimuli on the survival and differentiation of dental-pulp stem cells (DPSC), in vitro. However, the mechanisms communal to the inflammatory and angiogenic signaling involved in DPSC survival and differentiation remain unknown. Our studies observed that short-term exposure to TNF-α (6 and 12 hours [hrs]) induced apoptosis with an upregulation of VEGF expression and NF-κB signaling. However, long-term (chronic) exposure (14 days) to TNF-α resulted in an increased proliferation with a concomitant shortening of the telomere length. Interestingly, DPSC pretreated with Nemo binding domain (NBD) peptide (a cell permeable NF-κB inhibitor) significantly ameliorated TNF-α- and/or VEGF-induced proliferation and the shortening of telomere length. NBD peptide pretreatment significantly improved TNF-α-induced downregulation of proteins essential for differentiation, such as bone morphogenic proteins (BMP)-1 & 2, BMP receptor isoforms-1&2, trasnforming growth factor (TGF), osteoactivin and osteocalcin. Additionally, inhibition of NF-κB signaling markedly increased the mineralization potential, a process abrogated by chronic exposure to TNF-α. Thus, our studies demonstrated that chronic inflammation mediates telomere shortening via NF-κB signaling in human DPSC. Resultant chromosomal instability leads to an emergence of increased proliferation of DPSC, while negatively regulating the differentiation of DPSC, in vitro.  相似文献   
187.
The Anlage of the Drosophila visual system, called eye field, comprises a domain in the dorso-medial neurectoderm of the embryonic head and is defined by the expression of the early eye gene sine oculis (so). Beside the eye and optic lobe, the eye field gives rise to several neuroblasts that contribute their lineages to the central brain. Since so expression is only very short lived, the later development of these neuroblasts has so far been elusive. Using the P-element replacement technique [Genetics, 151 (1999) 1093] we generated a so-Gal4 line driving the reporter gene LacZ that perdures in the eye field derived cells throughout embryogenesis and into the larval period. This allowed us to reconstruct the morphogenetic movements of the eye field derived lineages, as well as the projection pattern of their neurons. The eye field produces a dorsal (Pc1/2) and a ventral (Pp3) group of three to four neuroblasts each. In addition, the target neurons of the larval eye, the optic lobe pioneers (OLPs) are derived from the eye field. The embryonically born (primary) neurons of the Pp3 lineages spread out at the inner surface of the optic lobe. Together with the OLPs, their axons project to the dorsal neuropile of the protocerebrum. Pp3 neuroblasts reassume expression of so-Gal4 in the larval period and produce secondary neurons whose axonal projection coincides with the pattern formed by the primary Pp3 neurons. Several other small clusters of neurons that originate from outside the eye field, but have axonal connections to the dorsal protocerebrum, also express so and are labeled by so-Gal4 driven LacZ. We discuss the dynamic pattern of the so-positive lineages as a tool to reconstruct the morphogenesis of the larval brain.  相似文献   
188.
189.
During the morphogenesis of mature human immunodeficiency virus-1 cores, viral capsid proteins assemble conical or tubular shells around viral ribonucleoprotein complexes. This assembly step is mimicked in vitro through reactions in which capsid proteins oligomerize to form long tubes, and this process can be modeled as consisting of a slow nucleation period, followed by a rapid phase of tube growth. We have developed a novel fluorescence microscopy approach to monitor in vitro assembly reactions and have employed it, along with electron microscopy analysis, to characterize the assembly process. Our results indicate that temperature, salt concentration, and pH changes have differential effects on tube nucleation and growth steps. We also demonstrate that assembly can be unidirectional or bidirectional, that growth can be capped, and that proteins can assemble onto the surfaces of tubes, yielding multiwalled or nested structures. Finally, experiments show that a peptide inhibitor of in vitro assembly also can dismantle preexisting tubes, suggesting that such reagents may possess antiviral effects against both viral assembly and uncoating. Our investigations help establish a basis for understanding the mechanism of mature human immunodeficiency virus-1 core assembly and avenues for antiviral inhibition.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号