排序方式: 共有53条查询结果,搜索用时 15 毫秒
11.
Background
Phosphatase and TENsin (PTEN) homolog is a negative regulator that takes part in IIS (insulin/insulin-like signaling) and Egfr (epidermal growth factor receptor) activation in Drosophila melanogaster. IIS and Egfr signaling events are also involved in the developmental process of queen and worker differentiation in honey bees (Apis mellifera). Here, we characterized the bee PTEN gene homologue for the first time and begin to explore its potential function during bee development and adult life.Results
Honey bee PTEN is alternatively spliced, resulting in three splice variants. Next, we show that the expression of PTEN can be down-regulated by RNA interference (RNAi) in the larval stage, when female caste fate is determined. Relative to controls, we observed that RNAi efficacy is dependent on the amount of PTEN dsRNA that is delivered to larvae. For larvae fed queen or worker diets containing a high amount of PTEN dsRNA, PTEN knockdown was significant at a whole-body level but lethal. A lower dosage did not result in a significant gene down-regulation. Finally, we compared same-aged adult workers with different behavior: nursing vs. foraging. We show that between nurses and foragers, PTEN isoforms were differentially expressed within brain, ovary and fat body tissues. All isoforms were expressed at higher levels in the brain and ovaries of the foragers. In fat body, isoform B was expressed at higher level in the nurse bees.Conclusion
Our results suggest that PTEN plays a central role during growth and development in queen- and worker-destined honey bees. In adult workers, moreover, tissue-specific patterns of PTEN isoform expression are correlated with differences in complex division of labor between same-aged individuals. Therefore, we propose that knowledge on the roles of IIS and Egfr activity in developmental and behavioral control may increase through studies of how PTEN functions can impact bee social phenotypes. 相似文献12.
The honey bee (Apis mellifera) is highly valued as a commercial crop pollinator and a model animal in research. Over the past several years, governments, beekeepers, and the general public in the United States and Europe have become concerned by increased losses of honey bee colonies, calling for more research on how to keep colonies healthy while still employing them extensively in agriculture. The honey bee, like virtually all multicellular organisms, has a mutually beneficial relationship with specific microbes. The microbiota of the gut can contribute essential nutrients and vitamins and prevent colonization by non-indigenous and potentially harmful species. The gut microbiota is also of interest as a resource for paratransgenesis; a Trojan horse strategy based on genetically modified symbiotic microbes that express effector molecules antagonizing development or transmission of pathogens. Paratransgenesis was originally engineered to combat human diseases and agricultural pests that are vectored by insects. We suggest an alternative use, as a method to promote health of honey bees and to expand the molecular toolbox for research on this beneficial social insect. The honey bees' gut microbiota contains lactic acid bacteria including the genus Lactobacillus that has paratransgenic potential. We present a strategy for transforming one Lactobacillus species, L. kunkeei, for use as a vector to promote health of honey bees and functional genetic research. 相似文献
13.
Temporal division of labor and foraging specialization are key characteristics of honeybee social organization. Worker honeybees (Apis mellifera) initiate foraging for food around their third week of life and often specialize in collecting pollen or nectar before they die. Variation in these fundamental social traits correlates with variation in worker reproductive physiology. However, the genetic and hormonal mechanisms that mediate the control of social organization are not understood and remain a central question in social insect biology. Here we demonstrate that a yolk precursor gene, vitellogenin, affects a complex suite of social traits. Vitellogenin is a major reproductive protein in insects in general and a proposed endocrine factor in honeybees. We show by use of RNA interference (RNAi) that vitellogenin gene activity paces onset of foraging behavior, primes bees for specialized foraging tasks, and influences worker longevity. These findings support the view that the worker specializations that characterize hymenopteran sociality evolved through co-option of reproductive regulatory pathways. Further, they demonstrate for the first time how coordinated control of multiple social life-history traits can originate via the pleiotropic effects of a single gene that affects multiple physiological processes. 相似文献
14.
15.
Ying Wang Navdeep S. Mutti Kate E. Ihle Adam Siegel Adam G. Dolezal Osman Kaftanoglu Gro V. Amdam 《PLoS genetics》2010,6(4)
Food choice and eating behavior affect health and longevity. Large-scale research efforts aim to understand the molecular and social/behavioral mechanisms of energy homeostasis, body weight, and food intake. Honey bees (Apis mellifera) could provide a model for these studies since individuals vary in food-related behavior and social factors can be controlled. Here, we examine a potential role of peripheral insulin receptor substrate (IRS) expression in honey bee foraging behavior. IRS is central to cellular nutrient sensing through transduction of insulin/insulin-like signals (IIS). By reducing peripheral IRS gene expression and IRS protein amount with the use of RNA interference (RNAi), we demonstrate that IRS influences foraging choice in two standard strains selected for different food-hoarding behavior. Compared with controls, IRS knockdowns bias their foraging effort toward protein (pollen) rather than toward carbohydrate (nectar) sources. Through control experiments, we establish that IRS does not influence the bees'' sucrose sensory response, a modality that is generally associated with food-related behavior and specifically correlated with the foraging preference of honey bees. These results reveal a new affector pathway of honey bee social foraging, and suggest that IRS expressed in peripheral tissue can modulate an insect''s foraging choice between protein and carbohydrate sources. 相似文献
16.
Hormone response to bidirectional selection on social behavior 总被引:1,自引:0,他引:1
Behavior is a quantitative trait determined by multiple genes. Some of these genes may have effects from early development and onward by influencing hormonal systems that are active during different life-stages leading to complex associations, or suites, of traits. Honey bees (Apis mellifera) have been used extensively in experiments on the genetic and hormonal control of complex social behavior, but the relationships between their early developmental processes and adult behavioral variation are not well understood. Bidirectional selective breeding on social food-storage behavior produced two honey bee strains, each with several sublines, that differ in an associated suite of anatomical, physiological, and behavioral traits found in unselected wild type bees. Using these genotypes, we document strain-specific changes during larval, pupal, and early adult life-stages for the central insect hormones juvenile hormone (JH) and ecdysteroids. Strain differences correlate with variation in female reproductive anatomy (ovary size), which can be influenced by JH during development, and with secretion rates of ecdysteroid from the ovaries of adults. Ovary size was previously assigned to the suite of traits of honey bee food-storage behavior. Our findings support that bidirectional selection on honey bee social behavior acted on pleiotropic gene networks. These networks may bias a bee's adult phenotype by endocrine effects on early developmental processes that regulate variation in reproductive traits. 相似文献
17.
This video demonstrates novel techniques of RNA interference (RNAi) which downregulate two genes simultaneously in honey bees using double-stranded RNA (dsRNA) injections. It also presents a protocol of proboscis extension response (PER) assay for measuring gustatory perception.RNAi-mediated gene knockdown is an effective technique downregulating target gene expression. This technique is usually used for single gene manipulation, but it has limitations to detect interactions and joint effects between genes. In the first part of this video, we present two strategies to simultaneously knock down two genes (called double gene knockdown). We show both strategies are able to effectively suppress two genes, vitellogenin (vg) and ultraspiracle (usp), which are in a regulatory feedback loop. This double gene knockdown approach can be used to dissect interrelationships between genes and can be readily applied in different insect species.The second part of this video is a demonstration of proboscis extension response (PER) assay in honey bees after the treatment of double gene knockdown. The PER assay is a standard test for measuring gustatory perception in honey bees, which is a key predictor for how fast a honey bee''s behavioral maturation is. Greater gustatory perception of nest bees indicates increased behavioral development which is often associated with an earlier age at onset of foraging and foraging specialization in pollen. In addition, PER assay can be applied to identify metabolic states of satiation or hunger in honey bees. Finally, PER assay combined with pairing different odor stimuli for conditioning the bees is also widely used for learning and memory studies in honey bees. 相似文献
18.
Vilde Leipart Jane Ludvigsen Matthew Kent Simen Sandve ThuHien To Mariann rnyasi Claus D. Kreibich Bjrn Dahle Gro V. Amdam 《Protein science : a publication of the Protein Society》2022,31(7)
Proteins are under selection to maintain central functions and to accommodate needs that arise in ever‐changing environments. The positive selection and neutral drift that preserve functions result in a diversity of protein variants. The amount of diversity differs between proteins: multifunctional or disease‐related proteins tend to have fewer variants than proteins involved in some aspects of immunity. Our work focuses on the extensively studied protein Vitellogenin (Vg), which in honey bees (Apis mellifera) is multifunctional and highly expressed and plays roles in immunity. Yet, almost nothing is known about the natural variation in the coding sequences of this protein or how amino acid‐altering variants might impact structure–function relationships. Here, we map out allelic variation in honey bee Vg using biological samples from 15 countries. The successful barcoded amplicon Nanopore sequencing of 543 bees revealed 121 protein variants, indicating a high level of diversity in Vg. We find that the distribution of non‐synonymous single nucleotide polymorphisms (nsSNPs) differs between protein regions with different functions; domains involved in DNA and protein–protein interactions contain fewer nsSNPs than the protein''s lipid binding cavities. We outline how the central functions of the protein can be maintained in different variants and how the variation pattern may inform about selection from pathogens and nutrition. 相似文献
19.
Light exposure leads to reorganization of microglomeruli in the mushroom bodies and influences juvenile hormone levels in the honeybee 下载免费PDF全文
Christina Scholl Ying Wang Markus Krischke Martin J. Mueller Gro V. Amdam Wolfgang Rössler 《Developmental neurobiology》2014,74(11):1141-1153
Honeybees show a remarkable behavioral plasticity at the transition from nursing inside the hive to foraging for nectar and/or pollen outside. This plasticity is important for age‐related division of labor in honeybee colonies. The behavioral transition is associated with significant volume and synaptic changes in the mushroom bodies (MBs), brain centers for sensory integration, learning, and memory. We tested whether precocious sensory exposure to light leads to changes in the density of synaptic complexes [microglomeruli (MG)] in the MBs. The results show that exposure to light pulses over 3 days induces a significant decrease in the MG density in visual subregions (collar) of the MB. Earlier studies had shown that foragers have increased levels of juvenile hormone (JH) co‐occurring with a decrease of vitellogenin (Vg). Previous work further established that RNAi‐mediated knockdown of vg and ultraspiracle (usp) induced an upregulation of JH levels, which can lead to precocious foraging. By disturbing both Vg and JH pathways using gene knockdown of vg and usp, we tested whether the changes in the hormonal system directly affect MG densities. Our study shows that MG numbers remained unchanged when Vg and JH pathways were perturbed, suggesting no direct hormonal influences on MG densities. However, mass spectrometry detection of JH revealed that precocious light exposure triggered an increase in JH levels in the hemolymph (HL) of young bees. This suggests a dual effect following light exposure via direct effects on MG reorganization in the MB calyx and a possible positive feedback on HL JH levels. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1141–1153, 2014 相似文献
20.
In this issue of Molecular Ecology, Kent et al. (2011) describe the adaptive evolution of honey bee vitellogenin that belongs to a phylogenetically conserved group of egg yolk precursors. This glyco‐lipoprotein leads a double life: it is central to egg production in the reproductive queen caste, and a regulator of social behaviour in the sterile worker caste. Does such social pleiotropy constrain molecular evolution? To the contrary; Kent et al. show that the vitellogenin gene is under strong positive selection in honey bees. Rapid change has taken place in specific protein regions, shedding light on the evolution of novel vitellogenin functions. 相似文献