首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   38篇
  487篇
  2021年   10篇
  2020年   7篇
  2019年   7篇
  2018年   5篇
  2017年   4篇
  2016年   9篇
  2015年   10篇
  2014年   13篇
  2013年   22篇
  2012年   36篇
  2011年   28篇
  2010年   20篇
  2009年   12篇
  2008年   21篇
  2007年   23篇
  2006年   20篇
  2005年   23篇
  2004年   27篇
  2003年   26篇
  2002年   11篇
  2001年   10篇
  2000年   10篇
  1999年   9篇
  1998年   12篇
  1997年   10篇
  1996年   3篇
  1994年   3篇
  1992年   4篇
  1990年   4篇
  1989年   3篇
  1988年   9篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1975年   2篇
  1973年   2篇
  1971年   2篇
  1969年   5篇
  1968年   2篇
  1967年   2篇
  1966年   4篇
  1940年   4篇
  1934年   3篇
  1928年   2篇
  1924年   2篇
排序方式: 共有487条查询结果,搜索用时 15 毫秒
101.
During cellular morphogenesis, changes in cell shape and cell junction topology are fundamental to normal tissue and organ development. Here we show that apoplastic Glycophosphatidylinositol (GPI)-anchored Lipid Transfer Protein (LTPG) is excluded from cell junctions and flat wall regions, and passively accumulates around their borders in the epidermal cells of Arabidopsis thaliana. Beginning with intense accumulation beneath highly curved cell junction borders, this enrichment is gradually lost as cells become more bulbous during their differentiation. In fully mature epidermal cells, YFP-LTPG often shows a fibrous cellulose microfibril-like pattern within the bulging outer faces. Physical contact between a flat glass surface and bulbous cell surface induces rapid and reversible evacuation from contact sites and accumulation to the curved wall regions surrounding the contact borders. Thus, LTPG distribution is dynamic, responding to changes in cell shape and wall curvature during cell growth and differentiation. We hypothesize that this geometry-based mechanism guides wax-carrying LTPG to functional sites, where it may act to “seal” the vulnerable border surrounding cell-cell junctions and assist in cell wall fortification and cuticular wax deposition.  相似文献   
102.
103.
104.
The overall objective was to evaluate the use of porcine luteinizing hormone (pLH) for synchronization of ovulation in cyclic gilts and its effect on reproductive function. In an initial study, four littermate pairs of cyclic gilts were given altrenogest (15 mg/d for 14 d). Gilts received 500 microg cloprostenol (Day 15), 600 IU equine chorionic gonadotropin (eCG) (Day 16) and either 5mg pLH or saline (Control) 80 h after eCG. Blood samples were collected every 4h, from 8h before pLH/saline treatment to the end of estrus. Following estrus detection, transcutaneous real-time ultrasonography and AI, all gilts were slaughtered 6d after the estimated time of ovulation. Peak plasma pLH concentrations (during the LH surge), as well as the amplitude of the LH surge, were greater in pLH-treated gilts than in the control (P=0.01). However, there were no significant differences between treatments in the timing and duration of estrus, or the timing of ovulation within the estrous period. In a second study, 45 cyclic gilts received altrenogest for 14-18d, 600 IU eCG (24h after last altrenogest), and 5mg pLH, 750 IU human chorionic gonadotropin (hCG), or saline, 80 h after eCG. For gilts given pLH or hCG, the diameter of the largest follicle before the onset of ovulation (mean+/-S.E.M.; 8.1+/-0.2 and 8.1+/-0.2mm, respectively) was smaller than in control gilts (8.6+/-0.2mm, P=0.05). The pLH and hCG groups ovulated sooner after treatment compared to the saline-treated group (43.2+/-2.5, 47.6+/-2.5 and 59.5+/-2.5h, respectively; P<0.01), with the most synchronous ovulation (P<0.01) in pLH-treated gilts. Embryo quality (total cell counts and embryo diameter) was not significantly different among groups. In conclusion, pLH reliably synchronized ovulation in cyclic gilts without significantly affecting embryo quality.  相似文献   
105.
百脉根BIO和豌豆突变位点ELE2的比较基因组定位   总被引:1,自引:0,他引:1  
豆科两侧对称花的花瓣具有背腹(DV)的分化以及可变的器官内部(IN)非对称性,在大小与形状上显示出不同的发育特征;因而花瓣的发育为克隆决定植物器官的形状与大小的关键基因提供了很好的实验系统。本研究对百脉根中BIO基因进行研究。百脉根bio突变体具有多效性,既影响花器官内部的对称性也影响器官的大小和育性,豌豆ele突变体的表型与bio相似。定位结果表明BIO和ELE2位于豆科基因组的共线性区段,提示BIO和ELE2可能是同源基因突变所致。本研究利用比较基因组定位方法,将BIO和ELE2候选基因锚定在豆科模式植物百脉根和蒺藜苜蓿基因组含有11个同源基因的BAC重叠群上。BIO和ELE2基因的克隆将有助于揭示豆科花瓣形态和大小调控的分子机理,进而为豆科作物遗传改良提供分子理论基础。  相似文献   
106.
The majority of the 90 capsule types made by the gram-positive pathogen Streptococcus pneumoniae are assembled by a block-type mechanism similar to that utilized by the Wzy-dependent O antigens and capsules of gram-negative bacteria. In this mechanism, initiation of repeat unit formation occurs by the transfer of a sugar to a lipid acceptor. In S. pneumoniae, this step is catalyzed by CpsE, a protein conserved among the majority of capsule types. Membranes from S. pneumoniae type 2 strain D39 and Escherichia coli containing recombinant Cps2E catalyzed incorporation of [14C]Glc from UDP-[14C]Glc into a lipid fraction in a Cps2E-dependent manner. The Cps2E-dependent glycolipid product from both membranes was sensitive to mild acid hydrolysis, suggesting that Cps2E was catalyzing the formation of a polyprenyl pyrophosphate Glc. Addition of exogenous polyprenyl phosphates ranging in size from 35 to 105 carbons to D39 and E. coli membranes stimulated Cps2E activity. The stimulation was due, in part, to utilization of the exogenous polyprenyl phosphates as an acceptor. The glycolipid product synthesized in the absence of exogenous polyprenyl phosphates comigrated with a 60-carbon polyprenyl pyrophosphate Glc. When 10 or 100 microM UMP was added to reaction mixtures containing D39 membranes, Cps2E activity was inhibited 40% and 80%, respectively. UMP, which acted as a competitive inhibitor of UDP-Glc, also stimulated Cps2E to catalyze the reverse reaction, with synthesis of UDP-Glc from the polyprenyl pyrophosphate Glc. These data indicated that Cps2E was catalyzing the addition of Glc-1-P to a polyprenyl phosphate acceptor, likely undecaprenyl phosphate.  相似文献   
107.
Previous studies show that transient increases in both blood flow and magnetic resonance image signal intensity (SI) occur in human muscle after brief, single contractions, and that the SI increases are threefold larger in physically active compared with sedentary subjects. This study examined the relationship between these transient changes by measuring anterior tibial artery flow (Doppler ultrasound), anterior muscle SI (3T, one-shot echo-planar images, TR/TE = 1,000/35), and muscle blood volume and hemoglobin saturation [near-infrared spectroscopy (NIRS)] in the same subjects after 1-s-duration maximum isometric ankle dorsiflexion contractions. Arterial flow increased to a peak 5.9 ± 0.7-fold above rest (SE, n = 11, range 2.6-10.2) within 7 s and muscle SI increased to a peak 2.7 ± 0.6% (range 0.0-6.0%) above rest within 12 s after the contractions. The peak postcontractile SI change was significantly correlated with both peak postcontractile flow (r = 0.61, n = 11) and with subject activity level (r = 0.63, n = 10) estimated from 7-day accelerometer recordings. In a subset of 7 subjects in which NIRS data acquisition was successful, the peak magnitude of the postcontractile SI change agreed well with SI calculated from the NIRS blood volume and saturation changes (r = 0.80, slope = 1.02, intercept = 0.16), confirming the blood-oxygenation-level-dependent (BOLD) mechanism underlying the SI change. The magnitudes of postcontractile changes in blood saturation and SI were reproduced by a simple one-compartment muscle vascular model that incorporated the observed pattern of postcontractile flow, and which assumed muscle O(2) consumption peaks within 2 s after a brief contraction. The results show that muscle postcontractile BOLD SI changes depend critically on the balance between O(2) delivery and O(2) consumption, both of which can be altered by chronic physical activity.  相似文献   
108.
109.
110.
The objective of this study was to determine the effect of alendronate on the viability of canine osteosarcoma cells and nonneoplastic canine cells. The sample population was composed of canine osteosarcoma tumor cells. Osteosarcoma cells and canine fibroblasts were maintained in culture under standard conditions. The MTT assay for cell viability was performed after 24, 48, and 72 h of incubation with alendronate (0.001 to 1000 microM) or no drug (control). Plates were set up so that each concentration and the control had a sample number of 8. The optical density (OD) of each well was measured at 540 nm using an enzyme-linked immunosorbent assay microplate reader. The percent viability was determined for each concentration and for each incubation time. After 24 h of incubation of POS (parent osteosarcoma) and HMPOS cells with alendronate, there was no significant difference in mean OD at any drug concentration when compared with control samples. A significant concentration- and time-dependent reduction in mean OD of osteosarcoma cells was observed after 48 and 72 h of incubation, with alendronate concentrations ranging from 10 to 1000 microM. The lowest percent cell viability observed in treated cells was 35%. Conversely, alendronate did not significantly affect mean OD in fibroblasts, and the lowest percent cell viability observed was 76%. Our data indicate that alendronate may have the potential to inhibit canine osteosarcoma tumor growth. It will be important to determine the clinical relevance of these in vitro findings. If similar findings are observed in vivo, use of alendronate may also be indicated as an adjuvant to existing chemotherapeutic protocols.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号