首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   466篇
  免费   36篇
  502篇
  2021年   10篇
  2020年   7篇
  2019年   7篇
  2018年   4篇
  2017年   4篇
  2016年   10篇
  2015年   10篇
  2014年   15篇
  2013年   22篇
  2012年   36篇
  2011年   30篇
  2010年   21篇
  2009年   14篇
  2008年   21篇
  2007年   24篇
  2006年   20篇
  2005年   24篇
  2004年   28篇
  2003年   26篇
  2002年   11篇
  2001年   9篇
  2000年   11篇
  1999年   9篇
  1998年   17篇
  1997年   9篇
  1996年   3篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   9篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1979年   2篇
  1973年   2篇
  1971年   2篇
  1969年   5篇
  1968年   2篇
  1967年   2篇
  1966年   4篇
  1940年   4篇
  1934年   3篇
  1928年   2篇
  1924年   2篇
排序方式: 共有502条查询结果,搜索用时 15 毫秒
11.
Despite intense studies, questions still remain regarding the molecular mechanisms leading to the development of hereditary breast and ovarian cancers. Research focused on elucidating the role of the breast cancer susceptibility gene 1 (BRCA1) in the DNA damage response may be of the most critical importance to understanding these processes. The BRCA1 protein has an N-terminal RING domain possessing E3 ubiquitin-ligase activity and a C-terminal BRCT domain involved in binding specific phosphoproteins. These domains are involved directly or indirectly in DNA double-strand break (DSB) repair. As the two terminal domains of BRCA1 represent two separate entities, understanding how these domains communicate and are functionally altered in regards to DSB repair is critical for understanding the development of BRCA1-related breast and ovarian cancers and for developing novel therapeutics. Herein, we review recent findings of how altered functions of these domains might lead to cancer through a mechanism of increased aberrant homologous recombination and possible implications for the development of BRCA1 inhibitors.Key words: BRCT, DNA repair, peptide, radiation, RING, ubiquitylation  相似文献   
12.
Perry  CT  Kench  PS  Smithers  SG  Riegl  BR  Gulliver  P  Daniells  JJ 《Coral reefs (Online)》2017,36(3):1013-1021

Low-lying coral reef islands are considered highly vulnerable to climate change, necessitating an improved understanding of when and why they form, and how the timing of formation varies within and among regions. Several testable models have been proposed that explain inter-regional variability as a function of sea-level history and, more recently, a reef platform size model has been proposed from the Maldives (central Indian Ocean) to explain intra-regional (intra-atoll) variability. Here we present chronostratigraphic data from Pipon Island, northern Great Barrier Reef (GBR), enabling us to test the applicability of existing regional island evolution models, and the platform size control hypothesis in a Pacific context. We show that reef platform infilling occurred rapidly (~4–5 mm yr−1) under a “bucket-fill” type scenario. Unusually, this infilling was dominated by terrigenous sedimentation, with platform filling and subsequent reef flat formation complete by ~5000 calibrated years BP (cal BP). Reef flat exposure as sea levels slowly fell post highstand facilitated a shift towards intertidal and subaerial-dominated sedimentation. Our data suggest, however, a lag of ~1500 yr before island initiation (at ~3200 cal BP), i.e. later than that reported from smaller and more evolutionarily mature reef platforms in the region. Our data thus support: (1) the hypothesis that platform size acts to influence the timing of platform filling and subsequent island development at intra-regional scales; and (2) the hypothesis that the low wooded islands of the northern GBR conform to a model of island formation above an elevated reef flat under falling sea levels.

  相似文献   
13.
14.
Ribonucleotide reductase (RR) is a key regulatory enzyme in the DNA synthesis pathway and is the target of the cancer chemotherapeutic agent hydroxyurea. The study of RR is significantly hindered by the tedious and labor-intensive nature of enzymatic assay. In this report, we present a novel RR assay in which detection of the deoxyribonucleotides produced by RR occurs via coupling to the DNA polymerase reaction, and is enhanced by using RNase to degrade endogenous RNA. Cell extracts from various cell lines were treated with RNase and then reacted with ATP and radioactive ribonucleotide diphosphate as the substrate. Incorporation of the radioactive substrate [14C]CDP into DNA was linear over 30 min and was linear with the amount of extract, which provided RR activity. The reaction was inhibited by hydroxyurea and required Mg2+ and ATP, suggesting that the assay is specific to RR activity. While RR activities determined by our method and by a conventional method were comparable, this novel method proved to be simpler, faster, more sensitive and less expensive. In addition, assay of the RR activity for multiple samples can easily be performed simultaneously. It is superior to other RR assays in all aspects.  相似文献   
15.
16.
During their symbiotic interaction with rhizobia, legume plants develop symbiosis-specific organs on their roots, called nodules, that house nitrogen-fixing bacteria. The molecular mechanisms governing the identity and maintenance of these organs are unknown. Using Medicago truncatula nodule root (noot) mutants and pea (Pisum sativum) cochleata (coch) mutants, which are characterized by the abnormal development of roots from the nodule, we identified the NOOT and COCH genes as being necessary for the robust maintenance of nodule identity throughout the nodule developmental program. NOOT and COCH are Arabidopsis thaliana BLADE-ON-PETIOLE orthologs, and we have shown that their functions in leaf and flower development are conserved in M. truncatula and pea. The identification of these two genes defines a clade in the BTB/POZ-ankyrin domain proteins that shares conserved functions in eudicot organ development and suggests that NOOT and COCH were recruited to repress root identity in the legume symbiotic organ.  相似文献   
17.
Spontaneous homeotic transformations have been described in natural populations of both plants and animals, but little is known about the molecular-genetic mechanisms underlying these processes in plants. In the ABC model of floral organ identity in Arabidopsis thaliana, the B- and C-functions are necessary for stamen morphogenesis, and C alone is required for carpel identity. We provide ABC model-based molecular-genetic evidence that explains the unique inside-out homeotic floral organ arrangement of the monocotyledonous mycoheterotroph species Lacandonia schismatica (Triuridaceae) from Mexico. Whereas a quarter million flowering plant species bear central carpels surrounded by stamens, L. schismatica stamens occur in the center of the flower and are surrounded by carpels. The simplest explanation for this is that the B-function is displaced toward the flower center. Our analyses of the spatio-temporal pattern of B- and C-function gene expression are consistent with this hypothesis. The hypothesis is further supported by conservation between the B-function genes of L. schismatica and Arabidopsis, as the former are able to rescue stamens in Arabidopsis transgenic complementation lines, and Ls-AP3 and Ls-PI are able to interact with each other and with the corresponding Arabidopsis B-function proteins in yeast. Thus, relatively simple molecular modifications may underlie important morphological shifts in natural populations of extant plant taxa.  相似文献   
18.
19.
The inheritance of flower color in pea (Pisum sativum) has been studied for more than a century, but many of the genes corresponding to these classical loci remain unidentified. Anthocyanins are the main flower pigments in pea. These are generated via the flavonoid biosynthetic pathway, which has been studied in detail and is well conserved among higher plants. A previous proposal that the Clariroseus (B) gene of pea controls hydroxylation at the 5' position of the B ring of flavonoid precursors of the anthocyanins suggested to us that the gene encoding flavonoid 3',5'-hydroxylase (F3'5'H), the enzyme that hydroxylates the 5' position of the B ring, was a good candidate for B. In order to test this hypothesis, we examined mutants generated by fast neutron bombardment. We found allelic pink-flowered b mutant lines that carried a variety of lesions in an F3'5'H gene, including complete gene deletions. The b mutants lacked glycosylated delphinidin and petunidin, the major pigments present in the progenitor purple-flowered wild-type pea. These results, combined with the finding that the F3'5'H gene cosegregates with b in a genetic mapping population, strongly support our hypothesis that the B gene of pea corresponds to a F3'5'H gene. The molecular characterization of genes involved in pigmentation in pea provides valuable anchor markers for comparative legume genomics and will help to identify differences in anthocyanin biosynthesis that lead to variation in pigmentation among legume species.  相似文献   
20.
We examined the sub-ice algal community in the Chukchi Sea during June 1998 using a remotely operated vehicle (ROV). Ice algae were observed on the under-ice surface at all ten stations (from 70°29′N to 72°26′N; 162°00′W to 153°56′W) and varied in abundance and distribution from small aggregations limited to depressions in the ice to nets, curtains and strands of Melosira. There was no relationship between percent cover of sub-ice algae and physical factors at the kilometer scale, but at the scale of individual ice floes the percent cover of sub-ice algae was positively correlated with distance from the floe edge and negatively correlated with snow depth. A significant positive relationship between the concentration of sediment pigments and percent cover of sub-ice could indicate a coupling between ice algal and benthic systems. Pieces of ice algae that appeared to be Melosira were observed on the seafloor to a depth of over 100 m and cells or spores of obligate ice algal taxa were collected from sediments from 44-m to 1,000-m deep. The large biomass of sub-ice algae observed at many stations in the Chukchi Sea and the presence of ice algae on the seafloor indicates that the distribution and abundance of sub-ice algae needs to be understood if we are to evaluate the role of ice algae in the Arctic marine ecosystem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号