首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   12篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   8篇
  2016年   5篇
  2015年   6篇
  2014年   6篇
  2013年   6篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  1996年   1篇
  1969年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有77条查询结果,搜索用时 31 毫秒
21.
Bacterial endosymbionts have been associated with arthropods and large number of the insect species show interaction with such bacteria. Different approaches have been used to understand such symbiont- host interactions. The whitefly, Bemisia tabaci, a highly invasive agricultural pest, harbors as many as seven different bacterial endosymbionts. These bacterial endosymbionts are known to provide various nutritional, physiological, environmental and evolutionary benefits to its insect host. In this study, we have tried to compare two techniques, Polymerase chain reaction (PCR) and Flourescence in situ Hybridisation (FISH) commonly used for identification and localization of bacterial endosymbionts in B. tabaci as it harbors one of the highest numbers of endosymbionts which have helped it in becoming a successful global invasive agricultural pest. The amplified PCR products were observed as bands on agarose gel by electrophoresis while the FISH samples were mounted on slides and observed under confocal microscope. Analysis of results obtained by these two techniques revealed the advantages of FISH over PCR. On a short note, performing FISH, using LNA probes proved to be more sensitive and informative for identification as well as localization of bacterial endosymbionts in B. tabaci than relying on PCR. This study would help in designing more efficient experiments based on much reliable detection procedure and studying the role of endosymbionts in insects.  相似文献   
22.
All living cells are subject to agents that promote DNA damage. A particularly lethal lesion are interstrand cross‐links (ICL), a property exploited by several anti‐cancer chemotherapies. In yeast and humans, an enzyme that plays a key role in repairing such damage are the PSO2/SNM1 nucleases. Here, we report that Trypanosoma brucei, the causative agent of African trypanosomiasis, possesses a bona fide member of this family (called TbSNM1) with expression of the parasite enzyme able to suppress the sensitivity yeast pso2Δ mutants display towards mechlorethamine, an ICL‐inducing compound. By disrupting the Tbsnm1 gene, we demonstrate that TbSNM1 activity is non‐essential to the medically relevant T. brucei life cycle stage. However, trypanosomes lacking this enzyme are more susceptible to bi‐ and tri‐functional DNA alkylating agents with this phenotype readily complemented by ectopic expression of Tbsnm1. Genetically modified variants of the null mutant line were subsequently used to establish the anti‐parasitic mechanism of action of nitrobenzylphosphoramide mustard and aziridinyl nitrobenzamide prodrugs, compounds previously shown to possess potent trypanocidal properties while exhibiting limited toxicity to mammalian cells. This established that these agents, following activation by a parasite specific type I nitroreductase, produce metabolites that promote formation of ICLs leading to inhibition of trypanosomal growth.  相似文献   
23.
Zoysiagrass (Zoysia spp.), belonging to the genus Zoysia in the subfamily Chloridoideae, is widely used in domestic lawns, sports fields and as forage. We constructed high‐density genetic maps of Zoysia japonica using a restriction site‐associated DNA sequencing (RAD‐Seq) approach and an F1 mapping population derived from a cross between ‘Carrizo’ and ‘El Toro’. Two linkage maps were constructed, one for each of the parents. A map consisting of 2408 RAD markers distributed on 21 linkage groups was constructed for ‘Carrizo’. Another map with 1230 RAD markers mapped on 20 linkage groups was constructed for ‘El Toro’. The average distance between adjacent markers of the two maps was at 0.56 and 1.4 cM, respectively. Comparative genomics analysis was carried out among zoysiagrass, rice and sorghum genomes and a highly conserved collinearity in the gene order was observed among the three genomes. Chromosome collinearity was disrupted at centromeric regions for each chromosome pair between zoysiagrass and sorghum genomes. However, no obvious synteny gaps were observed across the centromeric regions between zoysiagrass and rice genomes. Two homologous chromosomes for each of the 10 sorghum chromosomes were found in the zoysiagrass genome, indicating an allotetraploid origin for zoysiagrass. The reduction of the basic chromosome number from 12 to 10 in chloridoids and panicoids took place via independent single‐step nested chromosome fusion events after the two subfamilies diverged from a common ancestor. The genetic maps will assist in genome sequence assembly, targeted gene isolation and comparative genomic analyses among grasses.  相似文献   
24.

Bread wheat (Triticum aestivum L.) is one of the major cereal crops utilized worldwide for bread making. The presence of secalin locus on 1RS leads to the sticky dough and poor bread-making quality of wheat. In the present study, two donor parents, one with distal rye chromatin (1RS44:38) and another with distal wheat chromatin (Pavon MA1) without secalin, and one recipient elite wheat cultivar HD2967 were used. In 1RS44:38, the distal rye region has the Pm8 gene to which the QTL for superior root traits is linked, while in Pavon MA1 with Glu-B3/Gli-B1, the Pm8 gene was found to be absent. This distal rye region having root trait QTL was introgressed into the HD2967 derivatives using marker-assisted backcross selection. The derivatives with distal rye region introgression had higher root biomass, drought resistance, and 6–8% higher yield than the recipient parent cultivar. HD2967 is highly susceptible to yellow rust. Therefore, in the second backcross, the rust-resistant version of HD2967 (Lr57?+?Yr40) was used to introgress rust resistance in the derivatives. Background selection was done using polymorphic wheat anchored SSR markers of A, B, and D genomes of wheat which led to the selection of derivatives with?> 90% background of the recipient cultivar. The significant findings in this study include higher root biomass, improved yield, rust resistance in the derivatives, and retaining the alleles of Glu-B3/Gli-B1 along with Pm8 and the absence of secalin.

  相似文献   
25.
Negative interactions between species can generate divergent selection that causes character displacement. However, other processes cause similar divergence. We use spatial and temporal replication across island populations of Anolis lizards to assess the importance of negative interactions in driving trait shifts. Previous work showed that the establishment of Anolis sagrei on islands drove resident Anolis carolinensis to perch higher and evolve larger toepads. To further test the interaction's causality and predictability, we resurveyed a subset of islands nine years later. Anolis sagrei had established on one island between surveys. We found that A. carolinensis on this island now perch higher and have larger toepads. However, toepad morphology change on this island was not distinct from shifts on six other islands whose Anolis community composition had not changed. Thus, the presence of A. sagrei only partly explains A. carolinensis trait variation across space and time. We also found that A. carolinensis on islands with previously established A. sagrei now perch higher than a decade ago, and that current A. carolinensis perch height is correlated with A. sagrei density. Our results suggest that character displacement likely interacts with other evolutionary processes in this system, and that temporal data are key to detecting such interactions.  相似文献   
26.
M1 macrophages serve one edge as proinflammatory and M2 macrophages serve the other edge as an anti‐inflammatory macrophage. It appears that a related “switch” in macrophage morphology may also happen in the course of atherosclerosis, which has not yet been elucidated. An atherogenic diet (AD) was given to rats, and induction of macrophage differentiation and the nuclear localization of nuclear factor‐kappa B (NFκB) were investigated by Western blot and immunofluorescence. Chemokines were analyzed using an antibody array with 32 target proteins. M2 macrophage transformation was confirmed in diosgenin‐treated aorta by immunofluorescence and was validated in vitro using THP‐1 cells. MAC387 (macrophage marker) and NFκBp65 (inflammatory hub) were upregulated in oxidatively‐modified low‐density lipoprotein (OxyLDL) and AD‐induced condition. Macrophage differentiation, which induced the formation of inflammatory mediators, was not significantly suppressed by the inhibition of NFκB using dexamethasone. M1 macrophage polarization was identified in OxyLDL‐induced monocytes, which are proinflammatory in nature, whereas M2 macrophage polarization was noticed in diosgenin‐treated monocytes, which exhibit anti‐inflammatory properties. M1‐and M2‐specific chemokines were analyzed using chemokine antibody array. Furthermore, the expression of proinflammatory macrophage (M1) was noticed in AD‐induced aorta and anti‐inflammatory macrophage (M2) was observed in diosgenin‐treated aorta. This is the first report where, unifying the mechanism of diosgenin as aan nti‐atherosclerotic and the expression of M1 and M2 specific chemokines is shown by downregulating NFκB and not by preventing the differentiation of monocyte into a macrophage, but by allowing macrophage to differentiate into M2, which aids in preventing the atherosclerotic progression.  相似文献   
27.
Journal of Plant Biochemistry and Biotechnology - Bread wheat sustains genes for grain softness on “Ha” locus of short arm of 5D chromosome. Pina-D1 and Pinb-D1 alleles of...  相似文献   
28.
Morbidity and mortality in cystic fibrosis (CF) are due not only to abnormal epithelial cell function, but also to an abnormal immune response. We have shown previously that macrophages lacking CF transmembrane conductance regulator (CFTR), the gene mutated in CF, contribute significantly to the hyperinflammatory response observed in CF. In this study, we show that lack of functional CFTR in murine macrophages causes abnormal TLR4 subcellular localization. Upon LPS stimulation, CFTR macrophages have prolonged TLR4 retention in the early endosome and reduced translocation into the lysosomal compartment. This abnormal TLR4 trafficking leads to increased LPS-induced activation of the NF-κB, MAPK, and IFN regulatory factor-3 pathways and decreased TLR4 degradation, which affects downregulation of the proinflammatory state. In addition to primary murine cells, mononuclear cells isolated from CF patients demonstrate similar defects in response to LPS. Moreover, specific inhibition of CFTR function induces abnormal TLR4 trafficking and enhances the inflammatory response of wild-type murine cells to LPS. Thus, functional CFTR in macrophages influences TLR4 spatial and temporal localization and perturbs LPS-mediated signaling in both murine CF models and patients with CF.  相似文献   
29.
In Vitro Cellular & Developmental Biology - Plant - Aerva lanata L. with enhanced aervine content can be used as an alternative source of antioxidative and antibacterial compounds through in...  相似文献   
30.
The significance of G-quadruplexes and the helicases that resolve G4 structures in prokaryotes is poorly understood. The Mycobacterium tuberculosis genome is GC-rich and contains >10,000 sequences that have the potential to form G4 structures. In Escherichia coli, RecQ helicase unwinds G4 structures. However, RecQ is absent in M. tuberculosis, and the helicase that participates in G4 resolution in M. tuberculosis is obscure. Here, we show that M. tuberculosis DinG (MtDinG) exhibits high affinity for ssDNA and ssDNA translocation with a 5′ → 3′ polarity. Interestingly, MtDinG unwinds overhangs, flap structures, and forked duplexes but fails to unwind linear duplex DNA. Our data with DNase I footprinting provide mechanistic insights and suggest that MtDinG is a 5′ → 3′ polarity helicase. Notably, in contrast to E. coli DinG, MtDinG catalyzes unwinding of replication fork and Holliday junction structures. Strikingly, we find that MtDinG resolves intermolecular G4 structures. These data suggest that MtDinG is a multifunctional structure-specific helicase that unwinds model structures of DNA replication, repair, and recombination as well as G4 structures. We finally demonstrate that promoter sequences of M. tuberculosis PE_PGRS2, mce1R, and moeB1 genes contain G4 structures, implying that G4 structures may regulate gene expression in M. tuberculosis. We discuss these data and implicate targeting G4 structures and DinG helicase in M. tuberculosis could be a novel therapeutic strategy for culminating the infection with this pathogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号