首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   860篇
  免费   62篇
  2023年   6篇
  2022年   13篇
  2021年   36篇
  2020年   18篇
  2019年   17篇
  2018年   23篇
  2017年   26篇
  2016年   44篇
  2015年   85篇
  2014年   66篇
  2013年   52篇
  2012年   79篇
  2011年   94篇
  2010年   56篇
  2009年   36篇
  2008年   55篇
  2007年   55篇
  2006年   31篇
  2005年   36篇
  2004年   28篇
  2003年   22篇
  2002年   16篇
  2001年   2篇
  2000年   3篇
  1999年   7篇
  1998年   1篇
  1996年   3篇
  1989年   3篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1982年   3篇
  1978年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有922条查询结果,搜索用时 15 毫秒
121.
A fluorescent zinc 2,2'-dipicolylamine coordination complex PSVue?794 (probe 1) is known to selectively bind to phosphatidylserine exposed on the surface of apoptotic and necrotic cells. In this study, we investigated the cell death targeting properties of probe 1 in myocardial ischemia-reperfusion injury. A rat heart model of ischemia-reperfusion was used. Probe 1, control dye, or 99mTc glucarate was intravenously injected in rats subjected to 30-minute and 5-minute myocardial ischemia followed by 2-hour reperfusion. At 90 minutes or 20 hours postinjection, myocardial uptake was evaluated ex vivo by fluorescence imaging and autoradiography. Hematoxylin-eosin and cleaved caspase-3 staining was performed on myocardial sections to demonstrate the presence of ischemia-reperfusion injury and apoptosis. Selective accumulation of probe 1 could be detected in the area at risk up to 20 hours postinjection. Similar topography and extent of uptake of probe 1 and 99mTc glucarate were observed at 90 minutes postinjection. Histologic analysis demonstrated the presence of necrosis, but only a few apoptotic cells could be detected. Probe 1 selectively accumulates in myocardial ischemia-reperfusion injury and is a promising cell death imaging tool.  相似文献   
122.
The airway is kept sterile by an efficient innate defense mechanism. The cornerstone of airway defense is mucus containing diverse antimicrobial factors that kill or inactivate pathogens. Most of the mucus in the upper airways is secreted by airway submucosal glands. In patients with cystic fibrosis (CF), airway defense fails and the lungs are colonized by bacteria, usually Pseudomonas aeruginosa. Accumulating evidence suggests that airway submucosal glands contribute to CF pathogenesis by failing to respond appropriately to inhalation of bacteria. However, the regulation of submucosal glands by the innate immune system remains poorly understood. We studied the response of submucosal glands to the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α. These are released into the airway submucosa in response to infection with the bacterium P. aeruginosa and are elevated in CF airways. Stimulation with IL-1β and TNF-α increased submucosal gland secretion in a concentration-dependent manner with a maximal secretion rate of 240 ± 20 and 190 ± 40 pl/min, respectively. The half maximal effective concentrations were 11 and 20 ng/ml, respectively. The cytokine effect was dependent on cAMP but was independent of cGMP, nitric oxide, Ca(2+), or p38 MAP kinase. Most importantly, IL-1β- and TNF-α-stimulated secretion was blocked by the CF transmembrane conductance regulator (CFTR) blocker, CFTRinh172 (100 μmol/l) but was not affected by the Ca(2+)-activated Cl(-) channel blocker, niflumic acid (1 μmol/l). The data suggest, that during bacterial infections and resulting release of proinflammatory cytokines, the glands are stimulated to secrete fluid, and this response is mediated by cAMP-activated CFTR, a process that would fail in patients with CF.  相似文献   
123.
We have examined the association of insulin receptors (IR) and downstream signaling molecules with membrane microdomains in rat basophilic leukemia (RBL-2H3) cells following treatment with insulin or tris(2-pyridinecarbxylato)chromium(III) (Cr(pic)3). Single-particle tracking demonstrated that individual IR on these cells exhibited reduced lateral diffusion and increased confinement within 100 nm-scale membrane compartments after treatment with either 200 nM insulin or 10 μM Cr(pic)3. These treatments also increased the association of native IR, phosphorylated insulin receptor substrate 1 and phosphorylated AKT with detergent-resistant membrane microdomains of characteristically high buoyancy. Confocal fluorescence microscopic imaging of Di-4-ANEPPDHQ labeled RBL-2H3 cells also showed that plasma membrane lipid order decreased following treatment with Cr(pic)3 but was not altered by insulin treatment. Fluorescence correlation spectroscopy demonstrated that Cr(pic)3 did not affect IR cell-surface density or compete with insulin for available binding sites. Finally, Fourier transform infrared spectroscopy indicated that Cr(pic)3 likely associates with the lipid interface in reverse-micelle model membranes. Taken together, these results suggest that activation of IR signaling in a cellular model system by both insulin and Cr(pic)3 involves retention of IR in specialized nanometer-scale membrane microdomains but that the insulin-like effects of Cr(pic)3 are due to changes in membrane lipid order rather than to direct interactions with IR.  相似文献   
124.
The benthic amphipod Diporeia spp. was once the predominant macroinvertebrate in deep, offshore regions of the Laurentian Great Lakes. However, since the early 1990s, Diporeia populations have steadily declined across the area. It has been hypothesized that this decline is due to starvation from increasing competition for food with invasive dreissenid mussels. In order to gain a better understanding of the changes in Diporeia physiology during starvation, we applied two-dimensional gas chromatography coupled with time of flight mass spectrometry (GCXGC/TOF-MS) for investigating the responses in Diporeia metabolome during starvation. We starved Diporeia for 60 days and collected five organisms every 12 days for metabolome analyses. Upon arrival to the laboratory, organisms were flash frozen and served as control (day 0). We observed an increase in lipid oxidation and protein catabolism with subsequent declines of essential amino acids (proline, glutamine, and phenylalanine), down-regulation of glycerophospholipid and sphingolipid metabolism, and decreased polyunsaturated fatty acid abundance in nutritionally stressed Diporeia. Abundance of 1-Iodo-2-methylundecane, a metabolite closely related to insect pheromones, also declined with starvation. This research has further substantiated the applicability of GCXGC/TOF-MS as a research tool in the field of environmental metabolomics. The next step is to apply this new knowledge for evaluating nutritional status of feral Diporeia to elucidate the underlying cause(s) responsible for their decline in the Great Lakes.  相似文献   
125.
Safeguarding the welfare of animals is an important aim when defining housing and management standards in animal based, experimental research. While such standards are usually defined per animal species, it is known that considerable differences between laboratory mouse strains exist, for example with regard to their emotional traits. Following earlier experiments, in which we found that 129P3 mice show a lack of habituation of anxiety related behaviour after repeated exposure to an initially novel environment (non-adaptive profile), we here investigated four other 129 inbred mouse substrains (129S2/SvPas, 129S2/SvHsd (exp 1); 129P2 and 129X1 (exp 2)) on habituation of anxiety related behaviour. Male mice of each strain were repeatedly placed in the modified hole board test, measuring anxiety-related behaviour, exploratory and locomotor behaviour. The results reveal that all four substrains show a lack of habituation behaviour throughout the period of testing. Although not in all of the substrains a possible confounding effect of general activity can be excluded, our findings suggest that the genetic background of the 129 substrains may increase their vulnerability to cope with environmental challenges, such as exposure to novelty. This vulnerability might negatively affect the welfare of these mice under standard laboratory conditions when compared with other strains. Based on our findings we suggest to consider (sub)strain-specific guidelines and protocols, taking the (subs)train-specific adaptive capabilities into account.  相似文献   
126.
The therapeutic potential of stem cells is limited by the non-uniformity of their phenotypic state. Thus it would be advantageous to noninvasively monitor stem cell status. Driven by this challenge, we employed multidimensional multiphoton microscopy to quantify changes in endogenous fluorescence occurring with pluripotent stem cell differentiation. We found that global and cellular-scale fluorescence lifetime of human embryonic stem cells (hESC) and murine embryonic stem cells (mESC) consistently decreased with differentiation. Less consistent were trends in endogenous fluorescence intensity with differentiation, suggesting intensity is more readily impacted by nuances of species and scale of analysis. What emerges is a practical and accessible approach to evaluate, and ultimately enrich, living stem cell populations based on changes in metabolism that could be exploited for both research and clinical applications.  相似文献   
127.
Most carnivorous plants utilize insects in two ways: the flowers attract insects as pollen vectors for sexual reproduction, and the leaves trap insects for nutrients. Feeding on insects has been explained as an adaptation to nutrient‐poor soil, and carnivorous plants have been shown to benefit from insect capture through increased growth, earlier flowering and increased seed production. Most carnivorous plant species seem to benefit from insect pollination, although many species autonomously self‐pollinate and some propagate vegetatively. However, assuming that outcross pollen is advantageous and is a more important determinant of reproductive success than the nutrients gained from prey, there should be a selective pressure on carnivorous plants not to feed on their potential pollen vectors. Therefore, it has been suggested that carnivorous plants are subject to a conflict, often called the pollinator‐prey conflict (PPC). The conflict results from a trade‐off of the benefits from feeding on potentially pollinating insects versus the need to use them as pollen vectors for sexual reproduction. In this review we analyze the conditions under which a PPC may occur, review the evidence for the existence of PPCs in carnivorous plants, and explore the mechanisms that may be in place to prevent or alleviate a PPC. With respect to the latter, we discuss how plant signals such as olfactory and visual cues may play a role in separating the functions of pollinator attraction and prey capture.  相似文献   
128.
Cardiovascular growth must balance stabilizing signals required to maintain endothelial connections and network integrity with destabilizing signals that?enable individual endothelial cells to migrate and proliferate. The cerebral cavernous malformation (CCM) signaling pathway utilizes the adaptor protein CCM2 to strengthen endothelial cell junctions and stabilize vessels. Here we identify a CCM2 paralog, CCM2L, that is expressed selectively in endothelial cells during periods of active cardiovascular growth. CCM2L competitively blocks CCM2-mediated stabilizing signals biochemically, in cultured endothelial cells, and in developing mice. Loss of CCM2L reduces endocardial growth factor expression and impairs tumor growth and wound healing. Our studies identify CCM2L as a molecular mechanism by which endothelial cells coordinately regulate vessel stability and growth during cardiovascular development, as well as postnatal vessel growth.  相似文献   
129.
The pathophysiology of spinal cord injury (SCI) is characterized by the initial, primary injury followed by secondary injury processes in which oxidative stress is a critical component. Secondary injury processes not only exacerbate pathology at the site of primary injury, but also result in spreading of injuries to the adjacent, otherwise healthy tissue. The lipid peroxidation byproduct acrolein has been implicated as one potential mediator of secondary injury. To further and rigorously elucidate the role of acrolein in secondary injury, a unique ex vivo model is utilized to isolate the detrimental effects of mechanical injury from toxins such as acrolein that are produced endogenously following SCI. We demonstrate that (i) acrolein-Lys adducts are capable of diffusing from compressed tissue to adjacent, otherwise uninjured tissue; (ii) secondary injury by itself produces significant membrane damage and increased superoxide production; and (iii) these injuries are significantly attenuated by the acrolein scavenger hydralazine. Furthermore, hydralazine treatment results in significantly less membrane damage 2 h following compression injury, but not immediately after. These findings support our hypothesis that, following SCI, acrolein is increased to pathologic concentrations, contributes significantly to secondary injury, and thus represents a novel target for scavenging to promote improved recovery.  相似文献   
130.
In mice, intravenous injections are commonly administered in the lateral tail vein. This technique is sometimes difficult to carry out and may cause stress to mice. Though injection through the retro-orbital venous sinus can provide certain advantages over lateral tail vein injection, this method is poorly defined and infrequently used. To compare the efficacy of these two routes of drug delivery, the authors injected MAFIA transgenic mice with the depletion agent AP20187, which selectively induces apoptosis in macrophages. Each mouse received five consecutive daily injections through either the lateral tail vein or the retro-orbital venous sinus. The authors then compared macrophage depletion in different tissues (lung, spleen, bone marrow and peritoneal exudate cells). Both routes of injection were similarly effective. A separate experiment using BALB/c mice indicated that retro-orbital venous sinus injection was the less stressful of the two methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号