首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   12篇
  2023年   3篇
  2022年   4篇
  2021年   6篇
  2020年   9篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   12篇
  2015年   7篇
  2014年   17篇
  2013年   24篇
  2012年   22篇
  2011年   28篇
  2010年   15篇
  2009年   16篇
  2008年   21篇
  2007年   27篇
  2006年   19篇
  2005年   12篇
  2004年   12篇
  2003年   12篇
  2002年   11篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   7篇
  1991年   7篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有345条查询结果,搜索用时 15 毫秒
71.
Individual nonesterified fatty acids were bound to albumin in vitro and these fatty acid albumin complexes were used to study their effect on lipid peroxidation in liver microsomes. Peroxidation was induced by various methods and malondialdehyde (MDA) was measured as an index of peroxidation. Among the fatty acids tested, albumin-bound monounsaturated fatty acids showed more inhibition of peroxidation as compared to other fatty acids. Increasing the concentration of iron in the peroxidizing system, partially reversed the inhibition by fatty acids. Moreover, albumin-bound fatty acid did not inhibit iron independent peroxidation. This suggests that, like nonesterified fatty acids, albumin-bound fatty acids inhibit peroxidation by chelating the iron. Albumin fatty acid complex, similar to the fatty acid composition present in the circulating albumin, also showed inhibition of peroxidation. These data indicate that nonesterified fatty acids even when bound to albumin are capable of inhibiting peroxidation and circulating albumin, which contains various fatty acids bound to it, may impart some antioxidant effect in addition to other plasma antioxidants.  相似文献   
72.
73.
The use of a cassette incubation of probe substrates with human liver microsomes (HLM) - also known as the 'cocktail' approach - is becoming a widely accepted approach to determine the interaction of new chemical entities (NCEs) with cytochrome P450 enzymes (CYP450) in early drug discovery. This article describes two LC-MS/MS-based analytical methods used at the high-throughput (HT) stage and late discovery (LD) stage for analysis of 'cocktail' incubates to analyze the probe metabolites 1'-hydroxymidazolam (CYP3A4), 4'-hydroxydiclofenac (CYP2C9), dextrorphan (CYP2D6), 1'-hydroxytacrine (CYP1A2) and 4'-hydroxymephenytoin (CYP2C19). The analytical methods are advantageous over currently reported methods due to their sensitivity, shorter analyses times (<2 min/sample for the HT method and 4 min/sample for the LD method) and their ability to monitor a unique set of clinically relevant probe metabolites from a biological incubate containing low microsomal protein (0.1mg/mL). The analytical methods employ the same mobile phase, acetonitrile and 0.1% formic acid, under similar LC-MS/MS conditions. In the HT method, the chromatographic method consists of a short robust step-gradient where the probe metabolites are simultaneously and quickly eluted to enhance throughput. The probe metabolites are chromatographically resolved in the LD stage by utilizing a true linear gradient to obtain optimal peak separation. The IC50 data generated by both analytical methods using single incubations versus cocktail incubations for various test compounds are in good agreement (correlation coefficient (r2)>or=0.98). The scientist conducting the analysis is provided with a choice of method selection depending on the stage of the test compound and on whether throughput or minimizing interference from other co-eluting metabolites is the most important criterion.  相似文献   
74.
75.
The objective of this study was to explore the role of classical, lectin, and alternative pathways of complement activation in laser-induced choroidal neovascularization (CNV). The classical and alternative pathways were blocked in C57BL/6 mice by small interfering RNAs (siRNA) directed against C1q and factor B, respectively. C4(-/-) mice developed CNV similar to their wild-type controls and inhibition of C1q by siRNA had no effect on the development of CNV. In contrast, CNV was significantly inhibited (p < 0.001) in C5(-/-) mice and C57BL/6 mice treated with factor B siRNA. Inhibition of the alternative pathway by factor B siRNA resulted in decreased levels of membrane attack complex and angiogenic factors-vascular endothelial growth factor and TGF-beta2. Furthermore, factor B was up-regulated in complement sufficient C57BL/6 mice at day 1 postlaser and remained elevated at day 7. Significantly reduced levels of factor H were observed at day 3 in these animals. In conclusion, our results demonstrate that activation of the factor B-dependent alternative pathway, but not the classical or lectin pathways, was essential for the development of CNV in mouse model of laser-induced CNV. Thus, specific blockade of the alternative pathway may represent a therapeutically relevant strategy for the inhibition of CNV.  相似文献   
76.
The role of zinc (Zn) in reproduction of lentil (Lens culinaris Medik. cv. DPL 15) and the extent to which the Zn requirement for reproduction can be met through supplementation of Zn at the time of initiation of the reproductive phase have been investigated. Low supply (0.1micromol/L) of Zn reduced the size of anthers, the pollen producing capacity and the size and viability of the pollen grains. Scanning electron microscopy (SEM) of pollen grains of Zn deficient plants showed enhanced thickening of exine and wide and raised muri. In vitro germination of pollen grains was reduced by >50% and growth of pollen tubes was retarded. Unlike Zn sufficient plants, the cuticle around the stigmatic papillae of Zn deficient plants remained intact, preventing the interaction between pollen grains and stigmatic exudates that provides the polarity for the growth of pollen tubes through the stylar tract. Zn deficiency increased the activity of acid phosphatase and peroxidase in extracts of pollen grains. Histochemical localisation on the stigmatic surface and native PAGE of the enzyme extracts of pollen grain and stigma exudates showed enhanced expression of acid phosphatase and peroxidase and suppressed expression of esterase in response to Zn deficiency. Zn deficiency reduced the setting of seeds and also their viability. The effect on seed setting was more marked than on in vitro germination of pollen grains, suggesting that the latter was not the exclusive cause of inhibition of fertility. Possibly, loss of fertility was also caused by impairment in pollen-pistil interaction conducive to pollen tube growth and fertilisation. Impairment in pollen structure and function and seed setting was observed even when plants were deprived of Zn at the time of flowering, but to a lesser extent than in plants maintained with low Zn supply from the beginning. Increasing the Zn supply from deficient to sufficient at the initiation of flowering decreased the severity of Zn deficiency effects on pollen and stigma morphology, pollen fertility and seed yield. In conclusion, structural and functional changes induced in pollen grains and stigma of Zn deficient plants and associated decrease in seed setting of lentil indicate a critical requirement of Zn for pollen function and fertilisation that can be partially met by supplementing Zn at the onset of the reproductive phase.  相似文献   
77.
A novel series of 1-(2,4-dimethoxy-phenyl)-3-(1,3-diphenyl-1H-pyrazol-4-yl)-propenone (3) have been prepared by the Claisen–Schmidt condensation of 1-(2,4-dimethoxy-phenyl)-ethanone (1) and substituted 1,3-diphenyl-1H-pyrazole-4-carbaldehydes (2). Substituted 1,3-diphenyl-1H-pyrazole-4-carbaldehydes (2) were prepared by Vilsmeir–Haack reaction on acetophenonephenylhydrazones to offer the target compounds. The structures of the compounds were established by IR, 1H NMR and mass spectral analysis. All the compounds were evaluated for their anti-inflammatory (TNF-α and IL-6 inhibitory assays), antioxidant (DPPH free radical scavenging assay) and antimicrobial activities (agar diffusion method) against some pathogenic bacteria and fungi. Of 10 compounds screened, compounds 3a, 3c and 3g exhibited promising IL-6 inhibitory (35–70% inhibition, 10 μM), free radical scavenging (25–35% DPPH activity) and antimicrobial activities (MIC 100 μg/mL and 250 μg/mL) at varied concentrations. The structure–activity relationship (SAR) and in silico drug relevant properties (HBD, HBA, PSA, c Log P, molecular weight, EHOMO and ELUMO) further confirmed that the compounds are potential lead compounds for future drug discovery study. Toxicity of the compounds was evaluated theoretically and experimentally and revealed to be nontoxic except 3d and 3j.  相似文献   
78.
Biofilm formation by 102 Bacillus cereus and B. thuringiensis strains was determined. Strains isolated from soil or involved in digestive tract infections were efficient biofilm formers, whereas strains isolated from other diseases were poor biofilm formers. Cell surface hydrophobicity, the presence of an S layer, and adhesion to epithelial cells were also examined.The Bacillus cereus group includes B. cereus sensu stricto, B. anthracis, and B. thuringiensis, three genetically close pathogenic species. Based on genetic evidence, it has been suggested that they could represent one species (7). B. cereus sensu stricto is itself an opportunistic human pathogen occasionally found to cause various diseases such as endophthalmitis or periodontitis but is more frequently involved in gastrointestinal diseases with diarrheal or emetic syndromes (4, 12). Emetic syndromes result from the presence of cereulide, a heat-stable toxin produced in food before ingestion, whereas diarrheal syndromes require survival of the bacterium in the host digestive tract. B. thuringiensis is an insect pathogen, and B. anthracis causes anthrax, a lethal human disease.The persistent contamination of industrial food processing systems by B. cereus (12) may facilitate its involvement in gastroenteritis. This persistence is due to spores, which may survive pasteurization, heating, and gamma-ray irradiation (9, 13), and to biofilms, which have been shown to be highly resistant to cleaning procedures (18). Biofilms are also suspected to be involved in bacterial pathogenicity, as they may form on host epithelia (15).In this study, we wanted to test whether biofilm formation by species of the B. cereus group could be connected to the pathogenicity of the bacterium. For this purpose, we screened a collection of 102 pathogenic (diarrheal, emetic, and oral diseases) and nonpathogenic strains of B. cereus and B. thuringiensis for their capability to form biofilms. As adhesion to inert or living surfaces is a prerequisite for biofilm formation, we have investigated relationships within our collection of strains between biofilm formation and cell surface hydrophobicity, the presence of an S-layer, or adhesion to epithelial cells.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号