首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   38篇
  国内免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   9篇
  2015年   12篇
  2014年   11篇
  2013年   16篇
  2012年   21篇
  2011年   17篇
  2010年   8篇
  2009年   10篇
  2008年   12篇
  2007年   11篇
  2006年   9篇
  2005年   9篇
  2004年   11篇
  2003年   10篇
  2002年   16篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1989年   1篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1982年   2篇
  1979年   1篇
  1975年   2篇
排序方式: 共有252条查询结果,搜索用时 203 毫秒
131.

Background

The identification of Mycobacterium tuberculosis vaccines that elicit a protective immune response in the lungs is important for the development of an effective vaccine against tuberculosis.

Methods and Principal Findings

In this study, a comparison of intranasal (i.n.) and subcutaneous (s.c.) vaccination with the BCG vaccine demonstrated that a single moderate dose delivered intranasally induced a stronger and sustained M. tuberculosis-specific T-cell response in lung parenchyma and cervical lymph nodes of BALB/c mice than vaccine delivered subcutaneously. Both BCG and a multicomponent subunit vaccine composed of nine M. tuberculosis recombinant proteins induced strong antigen-specific T-cell responses in various local and peripheral immune compartments. Among the nine recombinant proteins evaluated, the alanine proline rich antigen (Apa, Rv1860) was highly antigenic following i.n. BCG and immunogenic after vaccination with a combination of the nine recombinant antigens. The Apa-induced responses included induction of both type 1 and type 2 cytokines in the lungs as evaluated by ELISPOT and a multiplexed microsphere-based cytokine immunoassay. Of importance, i.n. subunit vaccination with Apa imparted significant protection in the lungs and spleen of mice against M. tuberculosis challenge. Despite observed differences in the frequencies and location of specific cytokine secreting T cells both BCG vaccination routes afforded comparable levels of protection in our study.

Conclusion and Significance

Overall, our findings support consideration and further evaluation of an intranasally targeted Apa-based vaccine to prevent tuberculosis.  相似文献   
132.
Outer membrane (OM) proteins play a significant role in bacterial pathogenesis. In this work, we examined and compared the expression of the OM proteins of the rice pathogen Acidovorax avenae subsp. avenae strain RS-1, a Gram-negative bacterium, both in an in vitro culture medium and in vivo rice plants. Global proteomic profiling of A. avenae subsp. avenae strain RS-1 comparing in vivo and in vitro conditions revealed the differential expression of proteins affecting the survival and pathogenicity of the rice pathogen in host plants. The shotgun proteomics analysis of OM proteins resulted in the identification of 97 proteins in vitro and 62 proteins in vivo by mass spectrometry. Among these OM proteins, there is a high number of porins, TonB-dependent receptors, lipoproteins of the NodT family, ABC transporters, flagellins, and proteins of unknown function expressed under both conditions. However, the major proteins such as phospholipase and OmpA domain containing proteins were expressed in vitro, while the proteins such as the surface anchored protein F, ATP-dependent Clp protease, OmpA and MotB domain containing proteins were expressed in vivo. This may indicate that these in vivo OM proteins have roles in the pathogenicity of A. avenae subsp. avenae strain RS-1. In addition, the LC-MS/MS identification of OmpA and MotB validated the in silico prediction of the existance of Type VI secretion system core components. To the best of our knowledge, this is the first study to reveal the in vitro and in vivo protein profiles, in combination with LC-MS/MS mass spectra, in silico OM proteome and in silico genome wide analysis, of pathogenicity or plant host required proteins of a plant pathogenic bacterium.  相似文献   
133.
134.
Objective: The aim of this study was to evaluate the contribution of the BRCA1 and BRCA2 promoter methylation in the pathogenesis of sporadic breast cancer in Tunisian patients. Methods: Breast carcinoma tissues (n = 117) and available paired normal breast tissues (n = 65) from Tunisian women who had no family history were investigated for the methylation status of BRCA1 and BRCA2 promoters using methylation-specific PCR. Breast specimens from women without carcinoma (16 fibroadenomas and 5 mastopathies) were used as control. Results: Hypermethylation of BRCA1 and BRCA2 promoters was detected respectively in 60.7% and 69.2% of the carcinoma tissues, and in only 7.7% and 4.6% of the paired normal breast tissues. None of the fibroadenomas and mastopathies showed hypermethylation. Correlations were found between BRCA1 and BRCA2 hypermethylation and decrease in their mRNA expression (p = 0.02 and p = 0.009, respectively). Moreover, BRCA1 methylation correlates with patients age (p = 0.01) and triple negative (ER?, PR?, HER2?) tumors (p = 0.01). Patients with methylated BRCA1 and/or BRCA2 had a significant prolonged survivals compared to those with unmethylated tumors (p = 0.002). Conclusion: Our results suggest an important role of BRCA1 and BRCA2 promoter methylation in breast cancer development in the Tunisian population.  相似文献   
135.
Q fever is a disease caused by Coxiella burnetii, an obligate intracellular bacterium. Acute Q fever is spontaneously resolutive and is characterized by an efficient immune response. In contrast, chronic Q fever is characterized by dysregulated immune response, as demonstrated by the failure of C. burnetii to induce lymphoproliferation and the lack of granulomas. Recently, it has been demonstrated that when co-expressed in heterologous mammalian cell lines, the ligands of Numb proteins X1 and X2 (LNX1 and LNX2) regulate the level of the T-cell co-receptor CD8, which plays an essential role in T-cell-mediated immune response. We decided to investigate the expression of LNX1 and LNX2 genes in patients with acute or chronic Q fever. Interestingly, we found a high level of LNX1 and LNX2 mRNAs in endocarditis, the principal manifestation of chronic Q fever, but not in acute Q fever. Our data suggest that LNXs may be used as complementary biomarkers to follow the prognosis of chronic Q fever.  相似文献   
136.
137.
In the present study, we demonstrate that normal human IgG for therapeutic use (i.v. Ig) contains natural Abs directed against the CCR5 coreceptor for HIV-1. Abs to CCR5 were isolated from i.v. Ig using an affinity matrix consisting of a synthetic peptide corresponding to the N-terminus of CCR5 coupled to Sepharose. Natural anti-CCR5 Abs inhibited the binding of RANTES to macrophages, demonstrating their interaction with the coreceptor of R5-tropic HIV-1. Affinity-purified anti-CCR5 Ig further inhibited infection of lymphocytes and monocytes/macrophages with primary and laboratory-adapted strains of HIV-1, but did not inhibit infection with X4-tropic HIV. Our results suggest that anti-CCR5 Abs from healthy immunocompetent donors may be suitable for development of novel passive immunotherapy regimens in specific clinical settings in HIV infection.  相似文献   
138.
To efficiently bud off from infected cells, HIV and other enveloped viruses hijack the host cellular machinery that is normally involved in vacuolar protein sorting and multivesicular body (MVB) biogenesis. The HIV Gag protein mimics hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), a modular adaptor protein that links membrane cargo recognition to its degradation after delivery to MVBs. In contrast to T cells, where HIV budding occurs at the plasma membrane, virus buds into vacuoles of macrophages, a process that may facilitate its spread within the infected host.  相似文献   
139.
Recently we demonstrated the control of a mucosal challenge with a pathogenic chimera of simian and human immunodeficiency virus (SHIV-89.6P) by priming with a Gag-Pol-Env-expressing DNA and boosting with a Gag-Pol-Env-expressing recombinant modified vaccinia virus Ankara (DNA/MVA) vaccine. Here we evaluate the ability of the MVA component of this vaccine to serve as both a prime and a boost for an AIDS vaccine. The same immunization schedule, MVA dose, and challenge conditions were used as in the prior DNA/MVA vaccine trial. Compared to the DNA/MVA vaccine, the MVA-only vaccine raised less than 1/10 the number of vaccine-specific T cells but 10-fold-higher titers of binding antibody for Env. Postchallenge, the animals vaccinated with MVA alone increased their CD8 cell numbers to levels that were similar to those seen in DNA/MVA-vaccinated animals. However, they underwent a slower emergence and contraction of antiviral CD8 T cells and were slower to generate neutralizing antibodies than the DNA/MVA-vaccinated animals. Despite this, by 5 weeks postchallenge, the MVA-only-vaccinated animals had achieved as good control of the viral infection as the DNA/MVA group, a situation that has held up to the present time in the trial (48 weeks postchallenge). Thus, MVA vaccines, as well as DNA/MVA vaccines, merit further evaluation for their ability to control the current AIDS pandemic.  相似文献   
140.
The 3-hydroxyacyl ACP:CoA transacylase (PhaG) was recently identified in various Pseudomonas species and catalyzes the diversion of ACP thioester intermediates of fatty acid de novo biosynthesis toward the respective CoA thioesters, which serve as precursors for polyester and rhamnolipid biosynthesis. PhaG from Pseudomonas putida was overproduced in Escherichia coli as a C-terminal hexahistidine-tagged (His(6)) fusion protein in high yield. The His(6)-PhaG was purified to homogeneity by refolding of PhaG obtained from inclusion bodies, and a new enzyme assay was established. Kinetic analysis of the 3-hydroxyacyl transfer to ACP, catalyzed by His(6)-PhaG, gave K(0.5) values of 28 microm (ACP) and 65 microm (3-hydroxyacyl-CoA) considering V(max) values of 11.7 milliunits/mg and 12.4 milliunits/mg, respectively. A Hill coefficient of 1.38 (ACP) and 1.32 (3-hydroxyacyl-CoA) indicated a positive substrate cooperativity. Subcellular localization studies showed that PhaG is not attached to polyester granules and resides in the cytosol. Gel filtration chromatography analysis in combination with light scattering analysis indicated substrate-induced dimerization of the transacylase. A threading model of PhaG was developed based on the homology to an epoxide hydrolase (1cqz). In addition, the alignment with the alpha/beta-hydrolase fold region indicated that PhaG belongs to alpha/beta-hydrolase superfamily. Accordingly, CD analysis suggested a secondary structure composition of 29% alpha-helix, 22% beta-sheet, 18% beta-turn, and 31% random coil. Site-specific mutagenesis of seven highly conserved amino acid residues (Asp-60, Ser-102, His-177, Asp-182, His-192, Asp-223, His-251) was used to validate the protein model and to investigate organization of the transacylase active site. Only the D182(A/E) mutation was permissive with about 30% specific activity of the wild type enzyme. Furthermore, this mutation caused a change in substrate specificity, indicating a functional role in substrate binding. The serine-specific agent phenylmethylsulfonyl fluoride (PMSF) or the histidine-specific agent diethylpyrocarbonate (DEPC) caused inhibition of 3-hydroxyacyl transfer to holo-ACP, and the S102(A/T) or H251(A/R) PhaG mutant was incapable of catalyzing 3-hydroxyacyl transfer, suggesting that these residues are part of a catalytic triad.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号