首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   2篇
  2023年   2篇
  2021年   4篇
  2020年   6篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   7篇
  2013年   4篇
  2012年   9篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2007年   5篇
  2005年   3篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
11.
12.
Dendritic cells (DCs) are central to innate and adaptive immunity of early kidney ischemia-reperfusion injury (IRI), and strategies to alter DC function may provide new therapeutic opportunities. Sphingosine 1-phosphate (S1P) modulates immunity through binding to its receptors (S1P1-5), and protection from kidney IRI occurs in S1P3-deficient mice. Through a series of experiments we determined that this protective effect was owing in part to differences between S1P3-sufficient and -deficient DCs. Mice lacking S1P3 on bone marrow cells were protected from IRI, and S1P3-deficient DCs displayed an immature phenotype. Wild-type (WT) but not S1P3-deficient DCs injected into mice depleted of DCs prior to kidney IR reconstituted injury. Adoptive transfer (i.e., i.v. injection) of glycolipid (Ag)-loaded WT but not S1P3-deficient DCs into WT mice exacerbated IRI, suggesting that WT but not S1P3-deficient DCs activated NKT cells. Whereas WT DC transfers activated the Th1/IFN-γ pathway, S1P3-deficient DCs activated the Th2/IL-4 pathway, and an IL-4-blocking Ab reversed protection from IRI, supporting the concept that IL-4 mediates the protective effect of S1P3-deficient DCs. Administration of S1P3-deficient DCs 7 d prior to or 3 h after IRI protected mice from IRI and suggests their potential use in cell-based therapy. We conclude that absence of DC S1P3 prevents DC maturation and promotes a Th2/IL-4 response. These findings highlight the importance of DC S1P3 in modulating NKT cell function and IRI and support development of selective S1P3 antagonists for tolerizing DCs for cell-based therapy or for systemic administration for the prevention and treatment of IRI and autoimmune diseases.  相似文献   
13.
14.
The 14,200 available full length Arabidopsis thaliana cDNAs in the universal plasmid system (UPS) donor vector pUNI51 should be applied broadly and efficiently to leverage a “functional map-space” of homologous plant genes. We have engineered Cre-lox UPS host acceptor vectors (pCR701- 705) with N-terminal epitope tags in frame with the loxH site and downstream from the maize Ubiquitin promoter for use in transient protoplast expression assays and particle bombardment transformation of monocots. As an example of the utility of these vectors, we recombined them with several Arabidopsis cDNAs encoding Ser/Thr protein phosphatase type 2C (PP2Cs) known from genetic studies or predicted by hierarchical clustering meta-analysis to be involved in ABA and stress responses. Our functional results in Zea mays mesophyll protoplasts on ABA-inducible expression effects on the Late Embryogenesis Abundant promoter ProEm:GUS reporter were consistent with predictions and resulted in identification of novel activities of some PP2Cs. Deployment of these vectors can facilitate functional genomics and proteomics and identification of novel gene activities. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
15.
An N-acetyl-d-lactosamine (LacNAc) specific lectin from tubers of Alocasia cucullata was purified by affinity chromatography on asialofetuin-linked amino activated silica. The pure lectin showed a single band in SDS-PAGE at pH 8.8 and was a homotetramer with a subunit molecular mass of 13.5 kDa and native molecular mass of 53 kDa. It was heat stable up to 55 °C for 15 min and showed optimum hemagglutination activity from pH 2 to 11. The lectin was affected by denaturing agents such as urea (2 m), thiourea (2 m) and guanidine–HCl (0.5 m) and did not require Ca2+ and Mn2+ for its activity. It was a potent mitogen at 10 μg/ml towards human peripheral blood mononuclear cells with 50% growth inhibitory potential towards SiHa (human cervix ) cancer cell line at 100 μg/ml.  相似文献   
16.
The cytolethal distending toxins (CDTs) compose a subclass of intracellularly acting genotoxins produced by many Gram-negative pathogenic bacteria that disrupt the normal progression of the eukaryotic cell cycle. Here, the intoxication mechanisms of CDTs from Escherichia coli (Ec-CDT) and Haemophilus ducreyi (Hd-CDT), which share limited amino acid sequence homology, were directly compared. Ec-CDT and Hd-CDT shared comparable in vitro DNase activities of the CdtB subunits, saturable cell surface binding with comparable affinities, and the requirement for an intact Golgi complex to induce cell cycle arrest. In contrast, disruption of endosome acidification blocked Hd-CDT-mediated cell cycle arrest and toxin transport to the endoplasmic reticulum and nucleus, while having no effects on Ec-CDT. Phosphorylation of the histone protein H2AX, as well as nuclear localization, was inhibited for Hd-CdtB, but not Ec-CdtB, in cells expressing dominant negative Rab7 (T22N), suggesting that Hd-CDT, but not Ec-CDT, is trafficked through late endosomal vesicles. In support of this idea, significantly more Hd-CdtB than Ec-CdtB co-localized with Rab9, which is enriched in late endosomal compartments. Competitive binding studies suggested that Ec-CDT and Hd-CDT bind to discrete cell surface determinants. These results suggest that Ec-CDT and Hd-CDT are transported within cells by distinct pathways, possibly mediated by their interaction with different receptors at the cell surface.  相似文献   
17.

Wheat is the most widely grown staple food crop in the world and accounts for dietary needs of more than 35% of the human population. Current status of transgenic wheat development is slow all over the world due to the lack of a suitable transformation system. In the present study, an efficient and reproducible Agrobacterium-mediated transformation system in bread wheat (Triticum aestivum L.) is established. The mature and immature embryos of six recently released high yielding spring bread wheat genotypes were used to standardize various parameters using Agrobacterium tumefaciens strain EHA105 harbouring binary vector pCAMBIA3301 having gus and bar as marker genes. The optimum duration for embryo pre-culture, inoculation time and co-cultivation were 2 days, 30 min and 48 h, respectively. The bacterial inoculum concentration of OD of 1 at 600 nm showed 67.25% transient GUS expression in the histochemical GUS assay. The filter paper based co-cultivation limits the Agrobacterium overgrowth and had 82.3% explants survival rate whereas medium based strategy had 22.7% explants survival only. The medium having picloram 4 mg/l along with antibiotics (cefotaxime 500 mg/l and timentin 300 mg/l) was found best suitable for initial week callus induction. The standardized procedure gave overall 14.9% transformation efficiency in immature embryos and 9.8% in mature embryos and confirmed by gene-specific and promoter-specific PCR and southern analysis. These results indicate that the developed Agrobacterium-mediated transformation system is suitable for diverse wheat genotypes. The major obstacle for the implication of the CRISPR-based genome editing techniques is the non-availability of a suitable transformation system. Thus, the present system can be exploited to deliver the T-DNA into the wheat genome for CRISPR-based target modifications and transgene insertions.

  相似文献   
18.
Both epidemiologic and experimental findings suggest that infection with Porphyromonas gingivalis exacerbates progression of atherosclerosis. As P. gingivalis exhibits significant strain variation, it is reasonable that different strains possess different capabilities and/or mechanisms by which they promote atherosclerosis. Using P. gingivalis strains that have been previously evaluated in the ApoE null atherosclerosis model, we assessed the ability of W83, A7436, 381, and 33277 to adhere, invade, and persist in human coronary artery endothelial (HCAE) cells. W83 and 381 displayed an equivalent ability to adhere to HCAE cells, which was significantly greater than both A7436 and 33277 (P<0.01). W83, 381, and 33277 were more invasive than A7436 (P<0.0001). However, only W83 and A7436 were able to remain viable up to 48 hours in HCAE cell cultures, whereas 381 was cleared by 48 hours and 33277 was cleared by 24 hours. These differences in persistence were in part due to strain specific differences in intracellular trafficking. Both W83 and 381 trafficked through the autophagic pathway, but not A7436 or 33277. Internalized 381 was the only strain that was dependent upon the autophagic pathway for its survival. Finally, we assessed the efficacy of these strains to activate HCAE cells as defined by production of IL-6, IL-8, IL-12p40, MCP-1, RANTES, TNF-α, and soluble adhesion molecules (sICAM-1, sVCAM-1, and sE-selectin). Only moderate inflammation was observed in cells infected with either W83 or A7436, whereas cells infected with 381 exhibited the most profound inflammation, followed by cells infected with 33277. These results demonstrate that virulence mechanisms among different P. gingivalis strains are varied and that pathogenic mechanisms identified for one strain are not necessarily applicable to other strains.  相似文献   
19.
The availability of reproducible regeneration system through tissue culture is a major bottleneck in wheat improvement program. The present study has considered to develop an efficient callus induction and regeneration system using mature and immature embryos as explants in recently released agronomically superior spring wheat varieties. An efficient sterilization process was standardized using 0.1% HgCl2 and 70% ethanol for both seeds and embryos. The maximum possible combinations of plant growth regulators (PGRs) were evaluated for their effect on different wheat regeneration processes through tissue culture starting from callus to root induction. Picloram is found as an effective auxin with 87.63–98.67% callus induction efficiency in both explants. Supplementation of CuSO4 along with 2,4-D, zeatin in regeneration medium significantly enhanced the multiple shoot induction. The shoot development was achieved using full strength Murashige and Skoog’s (MS) medium and root induction using half MS medium without PGRs. The optimized medium and method has resulted up to 100% regeneration irrespective of the genotype used with high reproducibility. Thus, the standardized regeneration system can be used in the regeneration of healthy plants from embryos rescued from interspecies crosses, transgenic production, induced mutation breeding and recently developed genome editing techniques for the procreation of wheat plants having novel traits.  相似文献   
20.

Key message

Genetic structure among M. azedarach populations was detected and two subpopulations were present among them. A significant ‘isolation by distance’ was found in M. azedarach population in North-Western Plains of India.

Abstract

Melia azedarach is an important forest tree with pharmaceutical, insecticidal, pesticidal, and commercial significance. It is a good reforestation tree because of its fast growth and drought hardy nature. Genetic variation in a species allows itself to adapt, evolve and respond to environmental stress. It provides the basis for survival of a species and critically influences its evolutionary potential. Assessment of genetic diversity is necessary for improvement and conservation of a species. For this, microsatellite markers are of particular interest given the attributes like co-dominance, reproducibility, hyper variability and abundance throughout the genome. In the present study, we analyzed the genetic diversity and population structure of M. azedarach, an ecologically imperative species growing in the North-Western Plains of India. We developed 43 microsatellite markers, of which 20 were subsequently employed for analysis of diversity and population structure among 33 populations encompassing 318 genotypes representing North-Western Plains of India. A moderate level of diversity (Na = 5.1, Ho = 0.506, He = 0.712, I = 1.386) was assessed. The highest value of ΔK estimated using STRUCTURE indicated 2 subpopulations (K = 2). AMOVA exhibited 73 % variation within populations and 12 % variation was found among regions. Significant positive correlation between geographical and genetic distance was found (Rxy = 0.365, P = 0.010). The present study lays a foundation on a better understanding of genetic dynamics of the species and reveals its diversity and population structure in North-Western Plains of India.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号