首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5109篇
  免费   422篇
  国内免费   1篇
  5532篇
  2024年   7篇
  2023年   30篇
  2022年   110篇
  2021年   205篇
  2020年   120篇
  2019年   140篇
  2018年   150篇
  2017年   131篇
  2016年   221篇
  2015年   366篇
  2014年   370篇
  2013年   396篇
  2012年   541篇
  2011年   464篇
  2010年   269篇
  2009年   227篇
  2008年   310篇
  2007年   313篇
  2006年   240篇
  2005年   210篇
  2004年   176篇
  2003年   177篇
  2002年   136篇
  2001年   23篇
  2000年   11篇
  1999年   18篇
  1998年   27篇
  1997年   21篇
  1996年   14篇
  1995年   7篇
  1994年   15篇
  1993年   16篇
  1992年   9篇
  1991年   7篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1976年   5篇
  1973年   3篇
  1972年   2篇
  1971年   4篇
  1969年   3篇
  1968年   3篇
排序方式: 共有5532条查询结果,搜索用时 15 毫秒
81.
Many plants and ants engage in mutualisms where plants provide food and shelter to the ants in exchange for protection against herbivores and competitors. Although several species of herbivores thwart ant defenses and extract resources from the plants, the mechanisms that allow these herbivores to avoid attack are poorly understood. The specialist insect herbivore, Piezogaster reclusus (Hemiptera: Coreidae), feeds on Neotropical bull-horn acacias (Vachellia collinsii) despite the presence of Pseudomyrmex spinicola ants that nest in and aggressively defend the trees. We tested three hypotheses for how P. reclusus feeds on V. collinsii while avoiding ant attack: (1) chemical camouflage via cuticular surface compounds, (2) chemical deterrence via metathoracic defense glands, and (3) behavioral traits that reduce ant detection or attack. Our results showed that compounds from both P. reclusus cuticles and metathoracic glands reduce the number of ant attacks, but only cuticular compounds appear to be essential in allowing P. reclusus to feed on bull-horn acacia trees undisturbed. In addition, we found that ant attack rates to P. reclusus increased significantly when individuals were transferred between P. spinicola ant colonies. These results are consistent with the hypothesis that chemical mimicry of colony-specific ant or host plant odors plays a key role in allowing P. reclusus to circumvent ant defenses and gain access to important resources, including food and possibly enemy-free space. This interaction between ants, acacias, and their herbivores provides an excellent example of the ability of herbivores to adapt to ant defenses of plants and suggests that herbivores may play an important role in the evolution and maintenance of mutualisms.  相似文献   
82.
83.

Background and Aims

The main assemblage of the grass subfamily Chloridoideae is the largest known clade of C4 plant species, with the notable exception of Eragrostis walteri Pilg., whose leaf anatomy has been described as typical of C3 plants. Eragrostis walteri is therefore classically hypothesized to represent an exceptional example of evolutionary reversion from C4 to C3 photosynthesis. Here this hypothesis is tested by verifying the photosynthetic type of E. walteri and its classification.

Methods

Carbon isotope analyses were used to determine the photosynthetic pathway of several E. walteri accessions, and phylogenetic analyses of plastid rbcL and ndhF and nuclear internal transcribed spacer DNA sequences were used to establish the phylogenetic position of the species.

Results

Carbon isotope analyses confirmed that E. walteri is a C3 plant. However, phylogenetic analyses demonstrate that this species has been misclassified, showing that E. walteri is positioned outside Chloridoideae in Arundinoideae, a subfamily comprised entirely of C3 species.

Conclusions

The long-standing hypothesis of C4 to C3 reversion in E. walteri is rejected, and the classification of this species needs to be re-evaluated.  相似文献   
84.
85.
In the postantibiotic era, available treatment options for severe bacterial infections caused by methicillin-resistant Staphylococcus aureus have become limited. Therefore, new and innovative approaches are needed to combat such life-threatening infections. Virulence factor expression in S. aureus is regulated in a cell density-dependent manner using “quorum sensing,” which involves generation and secretion of autoinducing peptides (AIPs) into the surrounding environment to activate a bacterial sensor kinase at a particular threshold concentration. Mouse monoclonal antibody AP4-24H11 was shown previously to blunt quorum sensing-mediated changes in gene expression in vitro and protect mice from a lethal dose of S. aureus by sequestering the AIP signal. We have elucidated the crystal structure of the AP4-24H11 Fab in complex with AIP-4 at 2.5 Å resolution to determine its mechanism of ligand recognition. A key GluH95 provides much of the binding specificity through formation of hydrogen bonds with each of the four amide nitrogens in the AIP-4 macrocyclic ring. Importantly, these structural data give clues as to the interactions between the cognate staphylococcal AIP receptors AgrC and the AIPs, as AP4-24H11·AIP-4 binding recapitulates features that have been proposed for AgrC-AIP recognition. Additionally, these structural insights may enable the engineering of AIP cross-reactive antibodies or quorum quenching vaccines for use in active or passive immunotherapy for prevention or treatment of S. aureus infections.  相似文献   
86.
Restoration of shrubs in arid and semi‐arid rangelands is hampered by low success rates. Planting shrub seedlings is a method used to improve success in these rangelands; however, it is expensive and labor intensive. The efficiency of shrub restoration could be improved by identifying microsites where shrub survival is greater. Bitterbrush (Purshia tridentata Pursh DC) is an important shrub to wildlife that has declined because of conifer encroachment, excessive defoliation, wildfires, and low recruitment. We investigated planting bitterbrush seedlings in western juniper (Juniperus occidentalis ssp. occidentalis Hook) encroached shrublands after prescribed fire was used to control trees. Bitterbrush seedlings were planted in under (canopy) and between (interspace) former juniper canopies at five blocks and evaluated for three growing seasons. Bitterbrush survival was greater than 50% in the former canopy, but only 5% in the interspace microsite by the third growing season. Growth of bitterbrush was also greater in the former canopy compared with the interspace, potentially due to markedly less perennial vegetation in this microsite. Exotic annual grasses and annual forbs became prevalent in the former canopy in the second and third growing season, suggesting that soil resource availability was greater in this microsite. These results suggest that restoration success will vary by specific locations within a burned landscape and that this variability can be used to improve restoration efficiency. In this situation, bitterbrush restoration can be improved by planting seedlings in former canopy compared with interspace microsites.  相似文献   
87.
88.
Although the N-terminal BOX-I domain of the tumor suppressor protein p53 contains the primary docking site for MDM2, previous studies demonstrated that RNA stabilizes the MDM2.p53 complex using a p53 mutant lacking the BOX-I motif. In vitro assays measuring the specific activity of MDM2 in the ligand-free and RNA-bound state identified a novel MDM2 interaction site in the core domain of p53. As defined using phage-peptide display, the RNA.MDM2 isoform exhibited a notable switch in peptide binding specificity, with enhanced affinity for novel peptide sequences in either p53 or small nuclear ribonucleoprotein-U (snRNP-U) and substantially reduced affinity for the primary p53 binding site in the BOX-I domain. The consensus binding site for the RNA.MDM2 complex within p53 is SGXLLGESXF, which links the S9-S10 beta-sheets flanking the BOX-IV and BOX-V motifs in the core domain and which is a site of reversible conformational flexibility in p53. Mutation of conserved amino acids in the linker at Ser(261) and Leu(264), which bridges the S9-S10 beta-sheets, stimulated p53 activity from reporter templates and increased MDM2-dependent ubiquitination of p53. Furthermore, mutation of the conserved Phe(270) within the S10 beta-sheet resulted in a mutant p53, which binds more stably to RNA.MDM2 complexes in vitro and which is strikingly hyper-ubiquitinated in vivo. Introducing an Ala(19) mutation into the p53(F270A) protein abolished both RNA.MDM2 complex binding and hyper-ubiquitination in vivo, thus indicating that p53(F270A) protein hyper-ubiquitination depends upon MDM2 binding to its primary site in the BOX-I domain. Together, these data identify a novel MDM2 binding interface within the S9-S10 beta-sheet region of p53 that plays a regulatory role in modulating the rate of MDM2-dependent ubiquitination of p53 in cells.  相似文献   
89.
Myocardial remodeling is a major contributor in the development of heart failure (HF) after myocardial infarction (MI). Integrin-linked kinase (ILK), LIM-only adaptor PINCH-1, and α-parvin are essential components of focal adhesions (FAs), which are highly expressed in the heart. ILK binds tightly to PINCH-1 and α-parvin, which regulates FA assembly and promotes cell survival via the activation of the kinase Akt. Mice lacking ILK, PINCH or α-parvin have been shown to develop severe defects in the heart, suggesting that these proteins play a critical role in heart function. Utilizing failing human heart tissues (dilated cardiomyopathy, DCM), we found a 2.27-fold (p<0.001) enhanced expression of PINCH, 4 fold for α-parvin, and 10.5 fold (p<0.001) for ILK as compared to non-failing (NF) counterparts. No significant enhancements were found for the PINCH isoform PINCH-2 and parvin isoform β-parvin. Using a co-immunoprecipitation method, we also found that the PINCH-1-ILK-α-parvin (PIP) complex and Akt activation were significantly up-regulated. These observations were further corroborated with the mouse myocardial infarction (MI) and transaortic constriction (TAC) model. Thymosin beta4 (Tβ4), an effective cell penetrating peptide for treating MI, was found to further enhance the level of PIP components and Akt activation, while substantially suppressing NF-κB activation and collagen expression--the hallmarks of cardiac fibrosis. In the presence of an Akt inhibitor, wortmannin, we show that Tβ4 had a decreased effect in protecting the heart from MI. These data suggest that the PIP complex and activation of Akt play critical roles in HF development. Tβ4 treatment likely improves cardiac function by enhancing PIP mediated Akt activation and suppressing NF-κB activation and collagen-mediated fibrosis. These data provide significant insight into the role of the PIP-Akt pathway and its regulation by Tβ4 treatment in post-MI.  相似文献   
90.
A Bacillus sp. strain producing a bacteriocin-like substance was characterized by biochemical profiling and 16S rDNA sequencing. The phylogenetic analysis indicated that this strain has low sequence similarity with most Bacillus spp., suggesting a new species was isolated. The antimicrobial activity was detected starting at the exponential growth phase, and maximum activity was observed at stationary phase. The substance was inhibitory to a broad range of indicator strains, incluing pathogenic and food spoilage bacteria such as Listeria monocytogenes, B. cereus, Aeromonas hydrophila, Erwinia carotovora, Pasteurella haemolytica, Salmonella Gallinarum, among other. The antibacterial substance was stable over a wide pH range, but it was sensitive to pronase E and lipase. The antibacterial substance was bactericidal and bacteriolytic to L. monocytogenes and B. cereus at 160 AU ml−1. The identification of a broad range bacteriocin-like inhibitory substance active against L. monocytogenes addresses an important aspect of food protection against pathogens and spoilage microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号