首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5109篇
  免费   422篇
  国内免费   1篇
  5532篇
  2024年   7篇
  2023年   30篇
  2022年   110篇
  2021年   205篇
  2020年   120篇
  2019年   140篇
  2018年   150篇
  2017年   131篇
  2016年   221篇
  2015年   366篇
  2014年   370篇
  2013年   396篇
  2012年   541篇
  2011年   464篇
  2010年   269篇
  2009年   227篇
  2008年   310篇
  2007年   313篇
  2006年   240篇
  2005年   210篇
  2004年   176篇
  2003年   177篇
  2002年   136篇
  2001年   23篇
  2000年   11篇
  1999年   18篇
  1998年   27篇
  1997年   21篇
  1996年   14篇
  1995年   7篇
  1994年   15篇
  1993年   16篇
  1992年   9篇
  1991年   7篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1976年   5篇
  1973年   3篇
  1972年   2篇
  1971年   4篇
  1969年   3篇
  1968年   3篇
排序方式: 共有5532条查询结果,搜索用时 15 毫秒
61.
Thiols play a major role in the outcome of oxidative damage to DNA when it is initiated through cellular exposure to ionizing radiation. DNA radicals formed under aerobic conditions are converted to peroxyl radicals through trapping by oxygen at a diffusion-controlled rate. As a primary source of cellular reductant, thiols are responsible for the conversion of these DNA-derived peroxyl radicals to their corresponding hydrogen peroxides and subsequent strand breaks. Through the use of modified nucleotides, which act as precursors to nucleic acid radicals, we have investigated the effect of varying amounts of the cellular thiol glutathione (GSH) on the distribution of damage products produced from a 2-deoxyribose radical in DNA: the C3'-thymidinyl radical. The C3'-thymidinyl radical results from the abstraction of a hydrogen atom from the C3'-position of DNA oligomers at a thymidine residue, and is known to deliver several DNA damage lesions including the 3'-phosphoglycolaldehyde, 3'-phosphoglycolate and a 5'-aldehyde. Here we show that the level of GSH present has an impact on the level of production of these C3'-thymidinyl radical derived damage products.  相似文献   
62.
63.
Human ATP-binding cassette (ABC) transporters comprise a family of 48 membrane-spanning transport proteins, many of which are associated with genetic diseases or multidrug resistance of cancers. In this study, we present a comprehensive approach for the cloning, expression, and purification of human ABC transporters in the yeast Pichia pastoris. We analyzed the expression of 25 proteins and demonstrate that 11 transporters, including ABCC3, ABCB6, ABCD1, ABCG1, ABCG4, ABCG5, ABCG8, ABCE1, ABCF1, ABCF2, and ABCF3, were expressed at high levels comparable to that of ABCB1 (P-glycoprotein). As an example of the purification strategy via tandem affinity chromatography, we purified ABCC3 (MRP3) whose role in the transport of anticancer drugs, bile acids, and glucuronides has been controversial. The yield of ABCC3 was 3.5 mg/100 g of cells in six independent purifications. Purified ABCC3, activated with PC lipids, exhibited significant ATPase activity with a Vmax of 82 +/- 32 nmol min-1 mg-1. The ATPase activity was stimulated by bile acids and glucuronide conjugates, reaching 170 +/- 28 nmol min-1 mg-1, but was not stimulated by a variety of anticancer drugs. The glucuronide conjugates ethinylestradiol-3-glucuronide and 17beta-estradiol-17-glucuronide stimulated the ATPase with relatively high affinities (apparent Km values of 2 and 3 microM, respectively) in contrast to bile acids (apparent Km values of >130 microM), suggesting that glucuronides are the preferred substrates for this transporter. Overall, the availability of a purification system for the production of large quantities of active transporters presents a major step not only toward understanding the role of ABCC3 but also toward future structure-function analysis of other human ABC transporters.  相似文献   
64.
Choosing the culture system and culture medium used to produce cells are key steps toward a safe, scalable, and cost‐effective expansion bioprocess for cell therapy purposes. The use of AB human serum (AB HS) as an alternative xeno‐free supplement for mesenchymal stromal cells (MSC) cultivation has increasingly gained relevance due to safety and efficiency aspects. Here we have evaluated different scalable culture systems to produce a meaningful number of umbilical cord matrix‐derived MSC (UCM MSC) using AB HS for culture medium supplementation during expansion and cryopreservation to enable a xeno‐free bioprocess. UCM MSC were cultured in a scalable planar (compact 10‐layer flasks and roller bottles) and 3‐D microcarrier‐based culture systems (spinner flasks and stirred tank bioreactor). Ten layer flasks and roller bottles enabled the production of 2.6 ± 0.6 × 104 and 1.4 ± 0.3 × 104 cells/cm2. UCM MSC‐based microcarrier expansion in the stirred conditions has enabled the production of higher cell densities (5.5–23.0 × 104 cells/cm2) when compared to planar systems. Nevertheless, due to the moderate harvesting efficiency attained, (80% for spinner flasks and 46.6% for bioreactor) the total cell number recovered was lower than expected. Cells maintained the functional properties after expansion in all the culture systems evaluated. The cryopreservation of cells (using AB HS) was also successfully carried out. Establishing scalable xeno‐free expansion processes represents an important step toward a GMP compliant large‐scale production platform for MSC‐based clinical applications. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1358–1367, 2017  相似文献   
65.
Hypoxia is involved in many neuronal and non‐neuronal diseases, and defining the mechanisms for tissue adaptation to hypoxia is critical for the understanding and treatment of these diseases. One mechanism for tissue adaptation to hypoxia is increased glutamine and/or glutamate (Gln/Glu) utilization. To address this mechanism, we determined incorporation of Gln/Glu and other lipogenic substrates into lipids and fatty acids in both primary neurons and a neuronal cell line under normoxic and hypoxic conditions and compared this to non‐neuronal primary cells and non‐neuronal cell lines. Incorporation of Gln/Glu into total lipids was dramatically and specifically increased under hypoxia in neuronal cells including both primary (2.0‐ and 3.0‐fold for Gln and Glu, respectively) and immortalized cultures (3.5‐ and 8.0‐fold for Gln and Glu, respectively), and 90% to 97% of this increase was accounted for by incorporation into fatty acids (FA) depending upon substrate and cell type. All other non‐neuronal cells tested demonstrated decreased or unchanged FA synthesis from Gln/Glu under hypoxia. Consistent with these data, total FA mass was also increased in neuronal cells under hypoxia that was mainly accounted for by the increase in saturated and monounsaturated FA with carbon length from 14 to 24. Incorporation of FA synthesized from Gln/Glu was increased in all major lipid classes including cholesteryl esters, triacylglycerols, diacylglycerols, free FA, and phospholipids, with the highest rate of incorporation into triacylglycerols. These results indicate that increased FA biosynthesis from Gln/Glu followed by esterification may be a neuronal specific pathway for adaptation to hypoxia.

  相似文献   

66.
It has been hypothesized that the extensively overlapping temporal and parietal bones of the squamosal sutures in Paranthropus boisei are adaptations for withstanding loads associated with feeding. Finite element analysis (FEA) was used to investigate the biomechanical effects of suture size (i.e., the area of overlap between the temporal and parietal bones) on stress, strain energy, and strain ratio in the squamosal sutures of Pan troglodytes and P. boisei (specimen OH 5) during biting. Finite element models (FEMs) of OH 5 and a P. troglodytes cranium were constructed from CT scans. These models contain sutures that approximate the actual suture sizes preserved in both crania. The FEM of Pan was then modified to create two additional FEMs with squamosal sutures that are 50% smaller and 25% larger than those in the original model. Comparisons among the models test the effect of suture size on the structural integrity of the squamosal suture as the temporal squama and parietal bone move relative to each other during simulated premolar biting. Results indicate that with increasing suture size there is a decreased risk of suture failure, and that maximum stress values in the OH 5 suture were favorable compared to values in the Pan model with the normal suture size. Strain ratios suggest that shear is an important strain regime in the squamosal suture. This study is consistent with the hypothesis that larger sutures help reduce the likelihood of suture failure under high biting loads. Am J Phys Anthropol 153:260–268, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   
67.
68.
Nectin-1 is known to undergo ectodomain shedding by α-secretase and subsequent proteolytic processing by γ-secretase. How secretase-mediated cleavage of nectin-1 is regulated in neuronal cells and how nectin-1 cleavage affects synaptic adhesion is poorly understood. We have investigated α-and γ-secretase-mediated processing of nectin-1 in primary cortical neurons and identified which protease acts as a α-secretase. We report here that NMDA receptor activation, but not stimulation of AMPA or metabotropic glutamate receptors, resulted in robust α- and γ-secretase cleavage of nectin-1 in mature cortical neurons. Cleavage of nectin-1 required influx of Ca2+ through the NMDA receptor, and activation of calmodulin, but was not dependent on calcium/calmodulin-dependent protein kinase II (CaMKII) activation. We found that ADAM10 is the major secretase responsible for nectin-1 ectodomain cleavage in neurons and the brain. These observations suggest that α- and γ-secretase processing of nectin-1 is a Ca2+/calmodulin-regulated event that occurs under conditions of activity-dependent synaptic plasticity and ADAM10 and γ-secretase are responsible for these cleavage events.  相似文献   
69.
These experiments examined whether renal growth and the fetal renin-angiotensin system could be stimulated by infusion of amino acids and whether chronic amino acid infusions restored glomerulotubular balance, which had been disrupted during 4-h infusions. Five fetal sheep aged 122 +/- 1 days gestation received an infusion of alanine, glycine, proline and serine in 0.15 M saline at 0.22 mmol/min for 7 days. Six control fetuses were given saline at the same rate (5 ml/h). Kidney wet weights after amino acid infusion were 28% larger than control fetuses (P < 0.05), and renal angiotensinogen mRNA levels were approximately 2.6-fold higher (P < 0.005). Circulating renin levels and renal renin mRNA levels were suppressed (P < 0.05), and renal renin protein levels tended to be lower. Arterial pressure was increased, and there was a marked, sustained natriuresis and diuresis. Glomerular filtration rate and filtered sodium were approximately two-fold higher throughout infusion (P < 0.05). Fractional proximal sodium reabsorption, suppressed at 4 h (from 73.4 +/- 6.5 to 53.7 +/- 10.2%), did not return to control levels (36.1 +/- 3.4% on day 7, P < 0.05). Distal sodium reabsorption was markedly increased (from 79 +/- 25 to 261 +/- 75 mumol/min by day 7, P < 0.005), but this was not sufficient to restore glomerulotubular balance. The resultant high rates of sodium excretion led to hyponatremia and polyhydramnios. In conclusion, long-term amino acid infusions increased renal angiotensinogen gene expression, kidney weight, and distal nephron sodium reabsorptive capacity but failed to restore proximal and total glomerulotubular balance.  相似文献   
70.
Biosorption of metals by microorganisms is a promising technology to remove accumulated non-process elements in highly recycled biorefinery process water. Removal of these elements would enable greater water reuse and reduce the environmental impact of effluent discharge. A model lignocellulosic ethanol biorefinery wastewater was created based on pulp mill effluent. This generated a wastewater with an environmentally realistic high loading of dissolved natural organic matter (900?mg/l), a potentially important factor influencing metal biosorption. Analysis of feedstock and pulp mill effluent indicated that Mn and Zn are likely to be problematic in highly recycled lignocellulosic ethanol biorefinery process water. Therefore, the growth of several bacteria and fungi from existing collections, and some isolated from pulp mill effluent were tested in the model wastewater spiked with Mn and Zn (0.2?mM). Wastewater isolates grew the best in the wastewater. Metal uptake varied by species and was much greater for Zn than Mn. A bacterium, Novosphingobium nitrogenifigens Y88(T), removed the most metal per unit biomass, 35 and 17?mg?Mn/g. No other organism tested decreased the Mn concentration. A yeast, Candida tropicalis, produced the most biomass and removed the most total metal (38?% of Zn), while uptake per unit biomass was 24?mg?Zn/g. These results indicate that microorganisms can remove significant amounts of metals in wastewater with high concentrations of dissolved natural organic matter. Metal sorption by autochthonous microorganisms in an anaerobic bioreactor may be able to extend water reuse and therefore lower the water consumption of future biorefineries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号