首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5481篇
  免费   474篇
  国内免费   2篇
  5957篇
  2023年   30篇
  2022年   112篇
  2021年   208篇
  2020年   122篇
  2019年   142篇
  2018年   153篇
  2017年   134篇
  2016年   222篇
  2015年   371篇
  2014年   377篇
  2013年   407篇
  2012年   554篇
  2011年   484篇
  2010年   276篇
  2009年   235篇
  2008年   317篇
  2007年   320篇
  2006年   252篇
  2005年   225篇
  2004年   183篇
  2003年   184篇
  2002年   154篇
  2001年   32篇
  2000年   20篇
  1999年   29篇
  1998年   32篇
  1997年   22篇
  1996年   22篇
  1995年   9篇
  1994年   20篇
  1993年   21篇
  1992年   25篇
  1991年   20篇
  1990年   12篇
  1989年   10篇
  1988年   15篇
  1987年   17篇
  1986年   13篇
  1985年   15篇
  1984年   13篇
  1982年   9篇
  1981年   11篇
  1980年   8篇
  1978年   8篇
  1977年   11篇
  1976年   14篇
  1974年   12篇
  1973年   13篇
  1968年   7篇
  1967年   8篇
排序方式: 共有5957条查询结果,搜索用时 0 毫秒
91.
A Bacillus sp. strain producing a bacteriocin-like substance was characterized by biochemical profiling and 16S rDNA sequencing. The phylogenetic analysis indicated that this strain has low sequence similarity with most Bacillus spp., suggesting a new species was isolated. The antimicrobial activity was detected starting at the exponential growth phase, and maximum activity was observed at stationary phase. The substance was inhibitory to a broad range of indicator strains, incluing pathogenic and food spoilage bacteria such as Listeria monocytogenes, B. cereus, Aeromonas hydrophila, Erwinia carotovora, Pasteurella haemolytica, Salmonella Gallinarum, among other. The antibacterial substance was stable over a wide pH range, but it was sensitive to pronase E and lipase. The antibacterial substance was bactericidal and bacteriolytic to L. monocytogenes and B. cereus at 160 AU ml−1. The identification of a broad range bacteriocin-like inhibitory substance active against L. monocytogenes addresses an important aspect of food protection against pathogens and spoilage microorganisms.  相似文献   
92.
The actin cytoskeleton can be influenced by phospholipids and lipid-modifying enzymes. In animals the phosphatidylinositol phosphate kinases (PIPKs) are associated with the cytoskeleton through a scaffold of proteins; however, in plants such an interaction was not clear. Our approach was to determine which of the plant PIPKs interact with actin and determine whether the PIPK-actin interaction is direct. Our results indicate that AtPIPK1 interacts directly with actin and that the binding is mediated through a predicted linker region in the lipid kinase. AtPIPK1 also recruits AtPI4Kbeta1 to the cytoskeleton. Recruitment of AtPI4Kbeta1 to F-actin was dependent on the C-terminal catalytic domain of phosphatidylinositol-4-phosphate 5-kinase but did not require the presence of the N-terminal 251 amino acids, which includes 7 putative membrane occupation and recognition nexus motifs. In vivo studies confirm the interaction of plant lipid kinases with the cytoskeleton and suggest a role for actin in targeting PIPKs to the membrane.  相似文献   
93.
Trophoblast giant cells (TGCs) are the first terminally differentiated subtype to form in the trophoblast cell lineage in rodents. In addition to mediating implantation, they are the main endocrine cells of the placenta, producing several hormones which regulate the maternal endocrine and immune systems and promote maternal blood flow to the implantation site. Generally considered a homogeneous population, TGCs have been identified by their expression of genes encoding placental lactogen 1 or proliferin. In the present study, we have identified a number of TGC subtypes, based on morphology and molecular criteria and demonstrated a previously underappreciated diversity of TGCs. In addition to TGCs that surround the implantation site and form the interface with the maternal deciduas, we demonstrate at least three other unique TGC subtypes: spiral artery-associated TGCs, maternal blood canal-associated TGCs and a TGC within the sinusoidal spaces of the labyrinth layer of the placenta. All four TGC subtypes could be identified based on the expression patterns of four genes: Pl1, Pl2, Plf (encoded by genes of the prolactin/prolactin-like protein/placental lactogen gene locus), and Ctsq (from a placental-specific cathepsin gene locus). Each of these subtypes was detected in differentiated trophoblast stem cell cultures and can be differentially regulated; treatment with retinoic acid induces Pl1/Plf+ TGCs preferentially. Furthermore, cell lineage tracing studies indicated unique origins for different TGC subtypes, in contrast with previous suggestions that secondary TGCs all arise from Tpbpa+ ectoplacental cone precursors.  相似文献   
94.
95.
96.
97.
98.
The intermediate and anterior lobes of the pituitary gland are derived from an invagination of oral ectoderm that forms Rathke's pouch. During gestation proliferating cells are enriched around the pouch lumen, and they appear to delaminate as they exit the cell cycle and differentiate. During late mouse gestation and the postnatal period, anterior lobe progenitors re-enter the cell cycle and expand the populations of specialized, hormone-producing cells. At birth, all cell types are present, and their localization appears stratified based on cell type. We conducted a birth dating study of Rathke's pouch derivatives to determine whether the location of specialized cells at birth is correlated with the timing of cell cycle exit. We find that all of the anterior lobe cell types initiate differentiation concurrently with a peak between e11.5 and e13.5. Differentiation of intermediate lobe melanotropes is delayed relative to anterior lobe cell types. We discovered that specialized cell types are not grouped together based on birth date and are dispersed throughout the anterior lobe. Thus, the apparent stratification of specialized cells at birth is not correlated with cell cycle exit. Thus, the currently popular model of cell specification, dependent upon timing of extrinsic, directional gradients of signaling molecules, needs revision. We propose that signals intrinsic to Rathke's pouch are necessary for cell specification between e11.5 and e13.5 and that cell–cell communication likely plays an important role in regulating this process.  相似文献   
99.
All eukaryotic cells must segregate their chromosomes equally between two daughter cells at each division. This process needs to be robust, as errors in the form of loss or gain of genetic material have catastrophic effects on viability. Chromosomes are captured, aligned, and segregated to daughter cells via interaction with spindle microtubules mediated by the kinetochore. In Saccharomyces cerevisiae one microtubule attaches to each kinetochore, requiring extreme processivity from this single connection. The yeast Dam1 complex, an essential component of the outer kinetochore, forms rings around microtubules and in vitro recapitulates much of the functionality of a kinetochore-microtubule attachment. To understand the mechanism of the Dam1 complex at the kinetochore, we must know how it binds to microtubules, how it assembles into rings, and how assembly is regulated. We used electron microscopy to map several subunits within the structure of the Dam1 complex and identify the organization of Dam1 complexes within the ring. Of importance, new data strongly support a more passive role for the microtubule in Dam1 ring formation. Integrating this information with previously published data, we generated a structural model for the Dam1 complex assembly that advances our understanding of its function and will direct future experiments.  相似文献   
100.
Strom TS  Anur P  Prislovsky A 《PloS one》2011,6(11):e26657
The study of ex vivo phagocytosis via flow cytometry requires that one distinguish experimentally between uptake and adsorption of fluorescently labeled targets by phagocytes. Removal of the latter quantity from the analysis is the most common means of analyzing such data. Because the probability of phagocytosis is a function of the probability of adsorption, and because partially quenched fluorescence after uptake often overlaps with that of negative controls, this approach is suboptimal at best. Here, we describe a numerical analysis model which overcomes these limitations. We posit that the random adsorption of targets to macrophages, and subsequent phagocytosis, is a function of three parameters: the ratio of targets to macrophages (m), the mean fluorescence intensity imparted to the phagocyte by the internalized target (alpha), and the probability of phagocytosis per adsorbed target (p). The potential values of these parameters define a parameter space and their values at any point in parameter space can be used to predict the fraction of adsorption(+) and [adsorption(-), phagocytosis(+)] cells that might be observed experimentally. By systematically evaluating the points in parameter space for the latter two values and comparing them to experimental data, the model arrives at sets of parameter values that optimally predict such data. Using activated THP-1 cells as macrophages and platelets as targets, we validate the model by demonstrating that it can distinguish between the effects of experimental changes in m, alpha, and p. Finally, we use the model to demonstrate that platelets from a congenitally thrombocytopenic WAS patient show an increased probability of ex vivo phagocytosis. This finding correlates with other evidence that rapid in vivo platelet consumption contributes significantly to the thrombocytopenia of WAS. Our numerical analysis method represents a useful and innovative approach to multivariate analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号