首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5219篇
  免费   432篇
  国内免费   1篇
  5652篇
  2024年   7篇
  2023年   30篇
  2022年   109篇
  2021年   206篇
  2020年   120篇
  2019年   140篇
  2018年   153篇
  2017年   132篇
  2016年   226篇
  2015年   368篇
  2014年   375篇
  2013年   398篇
  2012年   545篇
  2011年   472篇
  2010年   271篇
  2009年   233篇
  2008年   315篇
  2007年   319篇
  2006年   251篇
  2005年   214篇
  2004年   181篇
  2003年   185篇
  2002年   143篇
  2001年   31篇
  2000年   14篇
  1999年   22篇
  1998年   29篇
  1997年   22篇
  1996年   16篇
  1995年   6篇
  1994年   16篇
  1993年   16篇
  1992年   9篇
  1991年   7篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   3篇
  1976年   6篇
  1973年   2篇
  1969年   3篇
  1968年   3篇
  1967年   4篇
  1965年   7篇
排序方式: 共有5652条查询结果,搜索用时 15 毫秒
121.
Many cooperatively breeding societies are characterized by high reproductive skew, such that some socially dominant individuals breed, while socially subordinate individuals provide help. Inbreeding avoidance serves as a source of reproductive skew in many high‐skew societies, but few empirical studies have examined sources of skew operating alongside inbreeding avoidance or compared individual attempts to reproduce (reproductive competition) with individual reproductive success. Here, we use long‐term genetic and observational data to examine factors affecting reproductive skew in the high‐skew cooperatively breeding southern pied babbler (Turdoides bicolor). When subordinates can breed, skew remains high, suggesting factors additional to inbreeding avoidance drive skew. Subordinate females are more likely to compete to breed when older or when ecological constraints on dispersal are high, but heavy subordinate females are more likely to successfully breed. Subordinate males are more likely to compete when they are older, during high ecological constraints, or when they are related to the dominant male, but only the presence of within‐group unrelated subordinate females predicts subordinate male breeding success. Reproductive skew is not driven by reproductive effort, but by forces such as intrinsic physical limitations and intrasexual conflict (for females) or female mate choice, male mate‐guarding and potentially reproductive restraint (for males). Ecological conditions or “outside options” affect the occurrence of reproductive conflict, supporting predictions of recent synthetic skew models. Inbreeding avoidance together with competition for access to reproduction may generate high skew in animal societies, and disparate processes may be operating to maintain male vs. female reproductive skew in the same species.  相似文献   
122.
Glucose uptake, glut 4 translocation and activation of protein kinase B were measured in Langendorff perfused hearts from (i) Wistar control, (ii) lean, neonatal Streptozotocin induced (Stz) and (iii) Zucker (fa/fa) obese diabetic rats of 10–12 weeks old. Hearts were subjected to stimulation with insulin, isoproterenol (-adrenergic agonist) or a combination of insulin and isoproterenol, during the perfusion protocol. Basal myocardial glucose uptake was impaired in both diabetic models, but could be stimulated significantly by insulin. In the Zucker rats, the time-course of insulin action was delayed. Insulin and -stimulation of glucose uptake were not additive. Evaluation of sarcolemmal membranes from these hearts showed that the affinity of glut 4 was significantly lower in the Zucker but not in the Stz hearts while a reduced affinity found with a combination of insulin and -stimulation in control hearts, was absent in both diabetic models. Total membrane lysates were analyzed for glut 4 expression while an intracellular component was generated to quantify translocation on stimulation as well as activity of protein kinase B (PKB). At this age, the neonatal Streptozotocin induced diabetic animals presented with more faulty regulation concerning adrenergic stimulated effects on elements of this signal transduction pathway while the Zucker fa/fa animals showed larger deviations in insulin stimulated effects. The overall response of the Zucker myocardium was poorer than that of the Stz group. No significant modulation of -adrenergic signaling on insulin stimulated glucose uptake was found. The PI-3-kinase inhibitor wortmannin, could abolish glucose uptake as well as PKB activation elicited by both insulin and isoproterenol.  相似文献   
123.

Introduction

Two major gout-causing genes have been identified, the urate transport genes SLC2A9 and ABCG2. Variation within the SLC17A1 locus, which encodes sodium-dependent phosphate transporter 1, a renal transporter of uric acid, has also been associated with serum urate concentration. However, evidence for association with gout is equivocal. We investigated the association of the SLC17A1 locus with gout in New Zealand sample sets.

Methods

Five variants (rs1165196, rs1183201, rs9358890, rs3799344, rs12664474) were genotyped across a New Zealand sample set totaling 971 cases and 1,742 controls. Cases were ascertained according to American Rheumatism Association criteria. Two population groups were studied: Caucasian and Polynesian.

Results

At rs1183201 (SLC17A1), evidence for association with gout was observed in both the Caucasian (odds ratio (OR) = 0.67, P = 3.0 × 10-6) and Polynesian (OR = 0.74, P = 3.0 × 10-3) groups. Meta-analysis confirmed association of rs1183201 with gout at a genome-wide level of significance (OR = 0.70, P = 3.0 × 10-8). Haplotype analysis suggested the presence of a common protective haplotype.

Conclusion

We confirm the SLC17A1 locus as the third associated with gout at a genome-wide level of significance.  相似文献   
124.
125.
Social hierarchy is a fact of life for many animals. Navigating social hierarchy requires understanding one''s own status relative to others and behaving accordingly, while achieving higher status may call upon cunning and strategic thinking. The neural mechanisms mediating social status have become increasingly well understood in invertebrates and model organisms like fish and mice but until recently have remained more opaque in humans and other primates. In a new study in this issue, Noonan and colleagues explore the neural correlates of social rank in macaques. Using both structural and functional brain imaging, they found neural changes associated with individual monkeys'' social status, including alterations in the amygdala, hypothalamus, and brainstem—areas previously implicated in dominance-related behavior in other vertebrates. A separate but related network in the temporal and prefrontal cortex appears to mediate more cognitive aspects of strategic social behavior. These findings begin to delineate the neural circuits that enable us to navigate our own social worlds. A major remaining challenge is identifying how these networks contribute functionally to our social lives, which may open new avenues for developing innovative treatments for social disorders.
“Observing the habitual and almost sacred ‘pecking order’ which prevails among the hens in his poultry yard—hen A pecking hen B, but not being pecked by it, hen B pecking hen C and so forth—the politician will meditate on the Catholic hierarchy and Fascism.” —Aldous Huxley, Point Counter Point (1929)
From the schoolyard to the boardroom, we are all, sometimes painfully, familiar with the pecking order. First documented by the Norwegian zoologist Thorleif Schjelderup-Ebbe in his PhD thesis on social status in chickens in the 1920s, a pecking order is a hierarchical social system in which each individual is ranked in order of dominance [1]. In chickens, the top hen can peck all lower birds, the second-ranking bird can peck all birds ranked below her, and so on. Since it was first coined, the term has become widely applied to any such hierarchical system, from business, to government, to the playground, to the military.Social hierarchy is a fact of life not only for humans and chickens but also for most highly social, group-living animals. Navigating social hierarchies and achieving dominance often appear to require cunning, intelligence, and strategic social planning. Indeed, the Renaissance Italian politician and writer Niccolo Machiavelli argued in his best-known book “The Prince” that the traits most useful for attaining and holding on to power include manipulation and deception [2]. Since then, the term “Machiavellian” has come to signify a person who deceives and manipulates others for personal advantage and power. 350 years later, Frans de Waal applied the term Machiavellian to social maneuvering by chimpanzees in his book Chimpanzee Politics [3]. De Waal argued that chimpanzees, like Renaissance Italian politicians, apply guile, manipulation, strategic alliance formation, and deception to enhance their social status—in this case, not to win fortune and influence but to increase their reproductive success (which is presumably the evolutionary origin of status-seeking in Renaissance Italian politicians as well).The observation that navigating large, complex social groups in chimpanzees and many other primates seems to require sophisticated cognitive abilities spurred the development of the social brain hypothesis, originally proposed to explain why primates have larger brains for their body size than do other animals [4],[5]. Since its first proposal, the social brain hypothesis has accrued ample evidence endorsing the connections between increased social network complexity, enhanced social cognition, and larger brains. For example, among primates, neorcortex size, adjusted for the size of the brain or body, varies with group size [6],[7], frequency of social play [8], and social learning [9].Of course, all neuroscientists know that when it comes to brains, size isn''t everything [10]. Presumably social cognitive functions required for strategic social behavior are mediated by specific neural circuits. Here, we summarize and discuss several recent discoveries, focusing on an article by Noonan and colleagues in the current issue, which together begin to delineate the specific neural circuits that mediate our ability to navigate our social worlds.Using structural magnetic resonance imaging (MRI), Bickart and colleagues showed that the size of the amygdala—a brain nucleus important for emotion, vigilance, and rapid behavioral responses—is correlated with social network size in humans [11]. Subsequent studies showed similar relationships for other brain regions implicated in social function, including the orbitofrontal cortex [12] and ventromedial prefrontal cortex [13]. Indeed, one study even found an association between grey matter density in the superior temporal sulcus (STS) and temporal gyrus and an individual''s number of Facebook friends [14]. Collectively, these studies suggest that the number and possibly the complexity of relationships one maintains varies with the structural organization of a specific network of brain regions, which are recruited when people perform tests of social cognition such as recognizing faces or inferring others'' mental states [15],[16]. These studies, however, do not reveal whether social complexity actively changes these brain areas through plasticity or whether individual differences in the structure of these networks ultimately determines social abilities.To address this question, Sallet and colleagues experimentally assigned rhesus macaques to social groups of different sizes and then scanned their brains with MRI [17]. The authors found significant positive associations between social network size and morphology in mid-STS, rostral STS, inferior temporal (IT) gyrus, rostral prefrontal cortex (rPFC), temporal pole, and amygdala. The authors also found a different region in rPFC that scaled positively with social rank; as grey matter in this region increased, so did the monkey''s rank in the hierarchy. As in the human studies described previously, many of these regions are implicated in various aspects of social cognition and perception [18]. These findings endorse the idea that neural plasticity is engaged in specifically social brain areas in response to the demands of the social environment, changing these areas structurally according to an individual''s experiences with others.Sallet and colleagues also examined spontaneous coactivation among these regions using functional MRI (fMRI). Measures of coactivation are thought to reflect coupling between regions [19],[20]; these measures are observable in many species [21],[22] and vary according to behavior [23],[24], genetics [25], and sex [26], suggesting that coactivation may underlie basic neural function and interaction between brain regions. The authors found that coactivation between the STS and rPFC increased with social network size and that coactivation between IT and rPFC increased with social rank. These findings show that not only do structural changes occur in these regions to meet the demands of the social environment but these structural changes mediate changes in function as well.One important question raised by the study by Sallet and colleagues is whether changes in the structure and function of social brain areas are specific outcomes of social network size or of dealing with social hierarchy. After all, larger groups offer more opportunity for a larger, more despotic pecking order. In the current volume, Noonan and colleagues address this question directly by examining the structural and functional correlates of social status in macaques independently of social group size [27]. The authors collected MRI scans from rhesus macaques and measured changes in grey matter associated with social dominance. By scanning monkeys of different ranks living in groups of different sizes, the authors were able to cleave the effects of social rank from those of social network size (Figure 1).Open in a separate windowFigure 1Brain regions in rhesus macaques related to social environment.Primary colors indicate brain regions in which morphometry tracks social network size. Pastel colors indicate brain regions in which morphometry tracks social status in the hierarchy. Regions of interest adapted from [48], overlaid on Montreal Neurological Institute (MNI) macaque template [49].The authors found a network of regions in which grey matter measures varied with social rank; these regions included the bilateral central amygdala, bilateral brainstem (between the medulla and midbrain, including parts of the raphe nuclei), and hypothalamus, which varied positively with dominance, and regions in the basal ganglia, which varied negatively with social rank. These regions have been implicated in social rank functions across a number of species [28][32]. Importantly, these relationships were unique to social status. There was no relationship between grey matter in these subcortical areas and social network size, endorsing a specific role in social dominance-related behavior. Nevertheless, grey matter in bilateral mid-STS and rPFC varied with both social rank and social network size, as reported previously. These findings demonstrate that specific brain areas uniquely mediate functions related to social hierarchy, whereas others may subserve more general social cognitive processes.Noonan and colleagues next probed spontaneous coactivation using fMRI to examine whether functional coupling between any of these regions varied with social status. They found that the more subordinate an animal, the stronger the functional coupling between multiple regions related to dominance. These results suggest that individual differences in social status are functionally observable in the brain even while the animal is at rest and not engaged in social behavior. These findings suggest that structural changes associated with individual differences in social status alter baseline brain function, consistent with the idea that the default mode of the brain is social [33] and that the sense of self and perhaps even awareness emerge from inwardly directed social reasoning [34].These findings resonate with previous work on the neural basis of social dominance in other vertebrates. In humans, for example, activity in the amygdala tracks knowledge of social hierarchy [28],[35] and, further, shows activity patterns that uniquely encode social rank and predict relevant behaviors [28]. Moreover, recent research has identified a specific region in the mouse hypothalamus, aptly named the “hypothalamic attack area” [36],[37]. Stimulating neurons in this area immediately triggers attacks on other mice and even an inflated rubber glove, while inactivating these neurons suppresses aggression [38]. In the African cichlid fish Haplochromis burtoni, a change in the social status of an individual male induces a reversible change in the abundance of specialized neurons in the hypothalamus that communicate hormonally with the pituitary and gonads [39]. Injections of this hormone in male birds after an aggressive territorial encounter amplifies the normal subsequent rise in testosterone [40]. Serotonin neurons in the raphe area of the brainstem also contribute to dominance-related behaviors in fish [29],[31] and aggression in monkeys [41].Despite these advances, there are still gaps in our understanding of how these circuits mediate status-related behaviors. Though regions in the amygdala, brainstem, and hypothalamus vary structurally and functionally with social rank, it remains unknown precisely how they contribute to or respond to social status. For example, though amygdala function and structure correlates with social status in both humans and nonhuman primates [27],[28],[35],[42], it remains unknown which aspects of dominance this region contributes to or underlies. One model suggests that the amygdala contributes to learning or representing one''s own status within a social hierarchy [28],[35]. Alternatively, the amygdala could contribute to behaviors that support social hierarchy, including gaze following [43] and theory of mind [44]. Lastly, the amygdala could contribute to social rank via interpersonal behaviors or personality traits, such as aggression [45], grooming [45], or fear responses [46],[47]. Future work will be critical to determine how signals in these regions relate to social status; direct manipulation of these regions, possibly via microstimulation, larger-scale brain stimulation (e.g., transcranial magnetic stimulation and transcranial direct current stimulation), or temporary lesions, will be critical to better understand these relationships.The work by Noonan and colleagues suggests new avenues for exploring how the brain both responds to and makes possible social hierarchy in nonhuman primates and humans. The fact that the neural circuits mediating dominance and social networking behavior can be identified and measured from structural and functional brain scans even at rest suggests the possibility that similar measures can be made in humans. Although social status is much more complex in people than it is in monkeys or fish, it is just as critical for us and most likely depends on shared neural circuits. Understanding how these circuits work, how they develop, and how they respond to the local social environment may help us to understand and ultimately treat disorders, like autism, social anxiety, or psychopathy, that are characterized by impaired social behavior and cognition.  相似文献   
126.
An intriguing feature of mitochondrial complex I from several species is the so-called A/D transition, whereby the idle enzyme spontaneously converts from the active (A) form to the de-active (D) form. The A/D transition plays an important role in tissue response to the lack of oxygen and hypoxic deactivation of the enzyme is one of the key regulatory events that occur in mitochondria during ischaemia. We demonstrate for the first time that the A/D conformational change of complex I does not affect the macromolecular organisation of supercomplexes in vitro as revealed by two types of native electrophoresis. Cysteine 39 of the mitochondrially-encoded ND3 subunit is known to become exposed upon de-activation. Here we show that even if complex I is a constituent of the I + III2 + IV (S1) supercomplex, cysteine 39 is accessible for chemical modification in only the D-form. Using lysine-specific fluorescent labelling and a DIGE-like approach we further identified two new subunits involved in structural rearrangements during the A/D transition: ND1 (MT-ND1) and 39 kDa (NDUFA9). These results clearly show that structural rearrangements during de-activation of complex I include several subunits located at the junction between hydrophilic and hydrophobic domains, in the region of the quinone binding site. De-activation of mitochondrial complex I results in concerted structural rearrangement of membrane subunits which leads to the disruption of the sealed quinone chamber required for catalytic turnover.  相似文献   
127.
The impact of rising global temperatures on survival and reproduction is putting many species at risk of extinction. In particular, it has recently been shown that thermal effects on reproduction, especially limits to male fertility, can underpin species distributions in insects. However, the physiological factors influencing fertility at high temperatures are poorly understood. Key factors that affect somatic thermal tolerance such as hardening, the ability to phenotypically increase thermal tolerance after a mild heat shock, and the differential impact of temperature on different life stages are largely unexplored for thermal fertility tolerance. Here, we examine the impact of high temperatures on male fertility in the cosmopolitan fruit fly Drosophila virilis. We first determined whether temperature stress at either the pupal or adult life history stage impacts fertility. We then tested the capacity for heat‐hardening to mitigate heat‐induced sterility. We found that thermal stress reduces fertility in different ways in pupae and adults. Pupal heat stress delays sexual maturity, whereas males heated as adults can reproduce initially following heat stress, but become sterile within seven days. We also found evidence that while heat‐hardening in D. virilis can improve high temperature survival, there is no significant protective impact of this same hardening treatment on fertility. These results suggest that males may be unable to prevent the costs of high temperature stress on fertility through heat‐hardening, which limits a species’ ability to quickly and effectively reduce fertility loss in the face of short‐term high temperature events.  相似文献   
128.

Inland recreational fisheries have social, economic, and ecological importance worldwide but these fisheries are increasingly challenged by the diverse effects of climate change. Coupled with other anthropogenic stressors, climate change has contributed to declines in freshwater biodiversity of greater severity than those observed across marine or terrestrial taxa. At a macro level, inland fisheries are experiencing declines. There are, however, a number of success stories, or ‘bright spots,’ in inland recreational fisheries management, where innovative approaches are leading to increases in social and ecological well-being in the face of climate change. Cases such as these are important sources of inspiration and learning about adaptation to climate and environmental change. In this article, we analyze 11 examples of such ‘bright spots’ drawn from multiple jurisdictions around the world from which we extracted lessons that might apply to fisheries management challenges beyond the region and context of each case. Collectively, these bright spots highlight adaptive initiatives that allow for recreational fisheries management to mitigate to stressors associated with current and future climate change. Examples identified include community-based restoration projects, collaborative and adaptive approaches to short-term fisheries closures, transdisciplinary large-scale conservation projects, and conservation-minded efforts by individuals and communities. By highlighting examples of ‘small wins’ within inland recreational fisheries management, this review contributes to the idea that a ‘positive future’ for inland recreational fisheries in the face of climate change is possible and highlights potential strategies to adapt to current and future climate scenarios.

  相似文献   
129.
Members of Cnidaria Medusozoa are known for their wide morphological variation, which is expressed on many different levels, especially in different phases of the life cycle. Difficulties in interpreting morphological variations have posed many taxonomic problems, since intraspecific morphological variations are often misinterpreted as interspecific variations and vice-versa, hampering species delimitation. This study reviews the patterns of morphological variation in the Medusozoa, to evaluate how different interpretations of the levels of variation may influence the understanding of the patterns of diversification in the group. Additionally, we provide an estimate of the cryptic diversity in the Hydrozoa, based on COI sequences deposited in GenBank. Morphological variations frequently overlap between microevolutionary and macroevolutionary scales, contributing to misinterpretations of the different levels of variation. In addition, most of the cryptic diversity described so far for the Medusozoa is a result of previously overlooked morphological differences, and there is still great potential for discovering cryptic lineages in the Hydrozoa. We provide evidence that the number of species in the Medusozoa is misestimated and emphasize the necessity of examining different levels of morphological variations when studying species boundaries, in order to avoid generalizations and misinterpretations of morphological characters.  相似文献   
130.
Candida is the most common human fungal pathogen and causes systemic infections that require neutrophils for effective host defense. Humans deficient in the C-type lectin pathway adaptor protein CARD9 develop spontaneous fungal disease that targets the central nervous system (CNS). However, how CARD9 promotes protective antifungal immunity in the CNS remains unclear. Here, we show that a patient with CARD9 deficiency had impaired neutrophil accumulation and induction of neutrophil-recruiting CXC chemokines in the cerebrospinal fluid despite uncontrolled CNS Candida infection. We phenocopied the human susceptibility in Card9 -/- mice, which develop uncontrolled brain candidiasis with diminished neutrophil accumulation. The induction of neutrophil-recruiting CXC chemokines is significantly impaired in infected Card9 -/- brains, from both myeloid and resident glial cellular sources, whereas cell-intrinsic neutrophil chemotaxis is Card9-independent. Taken together, our data highlight the critical role of CARD9-dependent neutrophil trafficking into the CNS and provide novel insight into the CNS fungal susceptibility of CARD9-deficient humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号