首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5080篇
  免费   420篇
  国内免费   1篇
  5501篇
  2024年   7篇
  2023年   30篇
  2022年   109篇
  2021年   205篇
  2020年   118篇
  2019年   140篇
  2018年   150篇
  2017年   131篇
  2016年   221篇
  2015年   366篇
  2014年   369篇
  2013年   394篇
  2012年   541篇
  2011年   464篇
  2010年   268篇
  2009年   227篇
  2008年   308篇
  2007年   311篇
  2006年   239篇
  2005年   209篇
  2004年   175篇
  2003年   176篇
  2002年   136篇
  2001年   23篇
  2000年   11篇
  1999年   16篇
  1998年   27篇
  1997年   21篇
  1996年   14篇
  1995年   6篇
  1994年   15篇
  1993年   15篇
  1992年   9篇
  1991年   7篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1976年   5篇
  1969年   2篇
  1968年   2篇
  1967年   1篇
  1961年   1篇
  1905年   1篇
排序方式: 共有5501条查询结果,搜索用时 15 毫秒
1.
2.
Woodlots are forest islands embedded within an urban matrix, and often represent the only natural areas remaining in suburban areas. Woodlots represent critical conservation areas for native plants, and are important habitat for wildlife in urban areas. Invasion by non-indigenous (NIS) plants can alter ecological structure and function, and may be especially severe in remnant forests where NIS propagule pressure is high. Woody shrubs in the Family Berberidaceae have been well documented as invaders of the forest–urban matrix in North America. Mahonia bealei (Berberidaceae) is a clonal shrub native to China, and is a popular ornamental in the Southeastern United States. Mahoni bealei is listed as “present” on some local and state floras, but almost nothing is known regarding its invasion potential in the United States. We sampled 15 woodlots in Clemson, South Carolina, to assess the invasion of M. bealei and other woody non-indigenous species (NIS). M. bealei invaded 87% of the woodlots surveyed and species richness of NIS on these woodlots varied from 5 to 14. Stepwise-multiple regression indicated that less canopy cover and older M. bealei predicted greater abundance of M. bealei , and that not all subdivisions were equally invaded (P < 0.0001; r2 = 0.88). The impact of M. bealei on native flora and fauna may be considerable, and it is likely to continue to spread in the Southeastern United States. M. bealei should be recognized as an aggressive invader in the Southeastern United States, with the potential for negative impacts on native flora and fauna.  相似文献   
3.
4.
Summary The expression of many secreted recombinant proteins in Gram-negative bacteria is limited by degradation in the periplasmic space. We have previously shown that the production of protein A--lactamase, a secreted fusion protein highly sensitive to proteolysis in Escherichia coli, can be increased in mutant strains deficient in up to three cell-envelope-associated proteolytic activities. In this work we investigated the effect of fermentation conditions on suppressing any residual proteolytic activity in various protease-deficient strains. Optimal production of the fusion protein was observed in cells grown under mildly acidic conditions (5.5pH6.0) and at low temperatures. These conditios were shown to specifically decrease the rate of proteolysis. In addition, a further increase in production was observed in cultures supplemented with 0.5 to 0.75 mM zinc chloride. This may relate to the inhibition of a cell envelope protease by Zn2+ ions. Offsprint requests to: G. Georgiou  相似文献   
5.
BackgroundTaenia solium is the most significant global foodborne parasite and the leading cause of preventable human epilepsy in low and middle-income countries in the form of neurocysticercosis.ObjectivesThis scoping review aimed to examine the methodology of peer-reviewed studies that estimate the burden of T. solium using disability-adjusted life years.Eligibility criteriaStudies must have calculated disability-adjusted life years relating to T. solium.Charting methodsThe review process was managed by a single reviewer using Rayyan. Published data relating to disease models, data sources, disability-adjusted life years, sensitivity, uncertainty, missing data, and key limitations were collected.Results15 studies were included for review, with seven global and eight national or sub-national estimates. Studies primarily employed attributional disease models that relied on measuring the occurrence of epilepsy before applying an attributable fraction to estimate the occurrence of neurocysticercosis-associated epilepsy. This method relies heavily on the extrapolation of observational studies across populations and time periods; however, it is currently required due to the difficulties in diagnosing neurocysticercosis. Studies discussed that a lack of data was a key limitation and their results likely underestimate the true burden of T. solium. Methods to calculate disability-adjusted life years varied across studies with differences in approaches to time discounting, age weighting, years of life lost, and years of life lived with disability. Such differences limit the ability to compare estimates between studies.ConclusionsThis review illustrates the complexities associated with T. solium burden of disease studies and highlights the potential need for a burden of disease reporting framework. The burden of T. solium is likely underestimated due to the challenges in diagnosing neurocysticercosis and a lack of available data. Advancement in diagnostics, further observational studies, and new approaches to parameterising disease models are required if estimates are to improve.  相似文献   
6.
7.
8.
A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks.Cell signaling research is faced with the challenging task of interrogating increasingly large numbers of analytes in “systems biology” approaches, while maintaining the high standards of integrity and reproducibility traditionally associated with the scientific approach. For example, studies interrogating complex systems, such as protein signaling networks, require quantification technologies capable of sensitive, specific, multiplexable, and reproducible application. However, recent reports have highlighted alarmingly high rates of irreproducibility in fundamental biological and pre-clinical studies (1, 2), as well as poor performance of affinity reagents used in traditional proteomic assay and detection platforms (3, 4). There is an imminent need for high quality assays, including highly characterized standards and detailed documentation of processes and procedures (5). To improve the translation of cell signaling discoveries into clinical application, we need reproducible and transferable technologies that enable higher throughput quantification of protein phosphorylation.Signaling dynamics through post-translational modifications (e.g. phosphorylation) are predominantly measured by Western blotting. Although this technique has led to many discoveries and is the de facto “gold standard,” it suffers from many drawbacks. Western blotting is a low throughput approach applied to individual analytes (i.e. no multiplexing) and is susceptible to erroneous interpretation when applied quantitatively (6). Alternative immunoassay platforms have emerged (e.g. immunohistochemistry, ELISA, mass cytometry, and bead-based or planar arrays), but suffer from similar limitations, namely specificity issues (because of cross-reactivity of antibodies), poor standardization, and difficulties in multiplexing.One alternative for quantifying phosphorylation is targeted, multiple reaction monitoring (MRM)1 MS, a widely deployed technique in clinical laboratories for quantification of small molecules (7, 8). MRM is now also well established for precise and specific quantification of endogenous, proteotypic peptides relative to spiked-in stable isotope-labeled internal standards (911), and MRM can be applied to phosphopeptides (1218). MRM assays can be run at high multiplex levels (1921) and can be standardized to be highly reproducible across laboratories (2224), even on an international stage (25). Because phosphorylation typically occurs at sub-stoichiometric levels and because phosphopeptides must compete for ionization with more abundant peptides, mass spectrometry-based analysis of phosphorylation requires an analyte enrichment step. Immuno-affinity enrichment approaches using anti-phospho-tyrosine antibodies (26) or panels of antibodies targeting signaling nodes (27) have been implemented with shotgun mass spectrometry. Although anti-peptide antibodies can also be used to enrich individual phosphopeptides upstream of MRM (28), the generation of these reagents is time-consuming and costly, limiting widespread uptake.Phosphopeptide enrichment based on metal affinity chromatography has recently matured into a reproducible approach (29). Immobilized metal affinity chromatography (IMAC) is widely used in discovery phosphoproteomic studies to enrich phosphopeptides upstream of shotgun-based mass spectrometry (30, 31). We hypothesized that a subset of the cellular phosphoproteome with favorable binding characteristics to the IMAC resin might be reproducibly recovered for quantification when coupled with quantitative MRM mass spectrometry, enabling robust IMAC-MRM assays without the need for an antibody.In this report, we: (1) demonstrate the feasibility of generating analytically robust, multiplex IMAC-MRM assays for quantifying cellular phospho-signaling, (2) present a semi-automated, 96-well format magnetic bead-based protocol for IMAC enrichment, (3) provide a catalogue of phosphopeptides that are highly amenable to IMAC-MRM quantification, and (4) make publicly available standard operating protocols (SOP) and fit-for-purpose analytical validation data for IMAC-MRM assays targeting 107 phospho-analytes, providing a community resource for study of the DNA damage response. The data suggest that the IMAC-MRM approach is generally applicable to signaling pathways, enabling wider interrogation of signaling networks.  相似文献   
9.

Background

Polymorphism of the Duffy Antigen Receptor for Chemokines (DARC) is associated with susceptibility to and the severity of Plasmodium vivax malaria in humans. P. vivax uses DARC to invade erythrocytes. Individuals lacking DARC are ‘resistant’ to P. vivax erythrocytic infection. However, susceptibility to P. vivax in DARC+ individuals is reported to vary between specific DARC genotypes. We hypothesized that the natural acquisition of antibodies to P. vivax blood stages may vary with the host genotype and the level of DARC expression. Furthermore, high parasitemia has been reported to effect the acquisition of immunity against pre-erythrocytic parasites. We investigated the correlation between host DARC genotypes and the frequency and magnitude of antibodies against P. vivax erythrocytic stage antigens.

Methodology/Findings

We assessed the frequencies and magnitudes of antibody responses against P. vivax and P. falciparum sporozoite and erythrocytic antigens in Colombian donors from malaria-endemic regions. The frequency and level of naturally-acquired antibodies against the P. vivax erythrocytic antigens merozoite surface protein 1 (PvMSP1) and Duffy binding protein (PvDBP) varied with the host DARC genotypes. Donors with one negative allele (FY*B/FY*Bnull and FY*A/FY*Bnull) were more likely to have anti-PvMSP1 and anti-PvDBP antibodies than those with two positive alleles (FY*B/FY*B and FY*A/FY*B). The lower IgG3 and IgG1 components of the total IgG response may account for the decreased responses to P. vivax erythrocytic antigens with FY*A/FY*B and FY*B/FY*B genotypes. No such association was detected with P. falciparum erythrocytic antigens, which does not use DARC for erythrocyte invasion.

Conclusion/Significance

Individuals with higher DARC expression, which is associated with higher susceptibility to P. vivax infection, exhibited low frequencies and magnitudes of P. vivax blood-stage specific antibody responses. This may indicate that one of the primary mechanisms by which P. vivax evades host immunity is through DARC indirectly down-regulating humoral responses against erythrocytic invasion and development.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号