首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7457篇
  免费   586篇
  国内免费   1篇
  8044篇
  2024年   9篇
  2023年   52篇
  2022年   142篇
  2021年   271篇
  2020年   171篇
  2019年   202篇
  2018年   224篇
  2017年   213篇
  2016年   335篇
  2015年   503篇
  2014年   521篇
  2013年   564篇
  2012年   721篇
  2011年   654篇
  2010年   373篇
  2009年   323篇
  2008年   416篇
  2007年   423篇
  2006年   344篇
  2005年   290篇
  2004年   257篇
  2003年   248篇
  2002年   195篇
  2001年   74篇
  2000年   79篇
  1999年   61篇
  1998年   42篇
  1997年   36篇
  1996年   24篇
  1995年   20篇
  1994年   27篇
  1993年   24篇
  1992年   21篇
  1991年   18篇
  1990年   14篇
  1989年   15篇
  1988年   11篇
  1987年   11篇
  1986年   9篇
  1984年   7篇
  1983年   9篇
  1982年   8篇
  1981年   8篇
  1979年   7篇
  1978年   6篇
  1976年   8篇
  1974年   7篇
  1973年   13篇
  1969年   4篇
  1968年   4篇
排序方式: 共有8044条查询结果,搜索用时 15 毫秒
61.
Biosorption of metals by microorganisms is a promising technology to remove accumulated non-process elements in highly recycled biorefinery process water. Removal of these elements would enable greater water reuse and reduce the environmental impact of effluent discharge. A model lignocellulosic ethanol biorefinery wastewater was created based on pulp mill effluent. This generated a wastewater with an environmentally realistic high loading of dissolved natural organic matter (900?mg/l), a potentially important factor influencing metal biosorption. Analysis of feedstock and pulp mill effluent indicated that Mn and Zn are likely to be problematic in highly recycled lignocellulosic ethanol biorefinery process water. Therefore, the growth of several bacteria and fungi from existing collections, and some isolated from pulp mill effluent were tested in the model wastewater spiked with Mn and Zn (0.2?mM). Wastewater isolates grew the best in the wastewater. Metal uptake varied by species and was much greater for Zn than Mn. A bacterium, Novosphingobium nitrogenifigens Y88(T), removed the most metal per unit biomass, 35 and 17?mg?Mn/g. No other organism tested decreased the Mn concentration. A yeast, Candida tropicalis, produced the most biomass and removed the most total metal (38?% of Zn), while uptake per unit biomass was 24?mg?Zn/g. These results indicate that microorganisms can remove significant amounts of metals in wastewater with high concentrations of dissolved natural organic matter. Metal sorption by autochthonous microorganisms in an anaerobic bioreactor may be able to extend water reuse and therefore lower the water consumption of future biorefineries.  相似文献   
62.
63.
Although the N-terminal BOX-I domain of the tumor suppressor protein p53 contains the primary docking site for MDM2, previous studies demonstrated that RNA stabilizes the MDM2.p53 complex using a p53 mutant lacking the BOX-I motif. In vitro assays measuring the specific activity of MDM2 in the ligand-free and RNA-bound state identified a novel MDM2 interaction site in the core domain of p53. As defined using phage-peptide display, the RNA.MDM2 isoform exhibited a notable switch in peptide binding specificity, with enhanced affinity for novel peptide sequences in either p53 or small nuclear ribonucleoprotein-U (snRNP-U) and substantially reduced affinity for the primary p53 binding site in the BOX-I domain. The consensus binding site for the RNA.MDM2 complex within p53 is SGXLLGESXF, which links the S9-S10 beta-sheets flanking the BOX-IV and BOX-V motifs in the core domain and which is a site of reversible conformational flexibility in p53. Mutation of conserved amino acids in the linker at Ser(261) and Leu(264), which bridges the S9-S10 beta-sheets, stimulated p53 activity from reporter templates and increased MDM2-dependent ubiquitination of p53. Furthermore, mutation of the conserved Phe(270) within the S10 beta-sheet resulted in a mutant p53, which binds more stably to RNA.MDM2 complexes in vitro and which is strikingly hyper-ubiquitinated in vivo. Introducing an Ala(19) mutation into the p53(F270A) protein abolished both RNA.MDM2 complex binding and hyper-ubiquitination in vivo, thus indicating that p53(F270A) protein hyper-ubiquitination depends upon MDM2 binding to its primary site in the BOX-I domain. Together, these data identify a novel MDM2 binding interface within the S9-S10 beta-sheet region of p53 that plays a regulatory role in modulating the rate of MDM2-dependent ubiquitination of p53 in cells.  相似文献   
64.

Research Notes on Avian Biology 1994: Selected Contributions from the 21st International Ornithological CongressGeneral Biology: Migration

Subject: Migration  相似文献   
65.
The comprehensive knowledge that the delayed systemic and reproduction side effects can be even more deleterious than acute toxicity, has caused a shift in focus toward sublethal effects assessment on physiology and behavior of beneficial insects. In this study, we assessed the risks posed by some insecticides with different mode of action through lethal and delayed systemic sublethal effects on the pupation, adult emergence, and reproduction of the chrysopid Chrysoperla externa (Hagen, 1861; Neuroptera: Chrysopidae), an important predator in pest biological control. The maximum field recommended dose (MFRD) and twice (2×MFRD) for chlorantraniliprole, tebufenozide, and pyriproxyfen were harmless to C. externa. In contrast, all the tested chitin synthesis inhibitors (CSIs) were highly detrimental to the predator, despite of their lack of acute lethal toxicity. Therefore, the safety assumed by using IGRs toward beneficial insects is not valid for chrysopids. Dose–response data showed that although all CSIs have a similar mechanism of action, the relative extent of toxicity may differ (novaluron > lufenuron > teflubenzuron). For CSIs, the delayed systemic effects became obvious at adult emergence, where the predicted no observable effect dose (NOED) was 1/2 048 of the MFRD for novaluron (0.085 ng/insect), and 1/256 of the MFRD for both lufenuron (0.25 ng/insect) and teflubenzuron (0.6 ng/insect). Finally, this work emphasized the significance of performing toxicity risk assessments with an adequate posttreatment period to avoid underestimating the toxicities of insecticides, as the acute lethal toxicity assays may not provide accurate information regarding the long‐range effects of hazardous compounds.  相似文献   
66.
67.
Restoration of shrubs in arid and semi‐arid rangelands is hampered by low success rates. Planting shrub seedlings is a method used to improve success in these rangelands; however, it is expensive and labor intensive. The efficiency of shrub restoration could be improved by identifying microsites where shrub survival is greater. Bitterbrush (Purshia tridentata Pursh DC) is an important shrub to wildlife that has declined because of conifer encroachment, excessive defoliation, wildfires, and low recruitment. We investigated planting bitterbrush seedlings in western juniper (Juniperus occidentalis ssp. occidentalis Hook) encroached shrublands after prescribed fire was used to control trees. Bitterbrush seedlings were planted in under (canopy) and between (interspace) former juniper canopies at five blocks and evaluated for three growing seasons. Bitterbrush survival was greater than 50% in the former canopy, but only 5% in the interspace microsite by the third growing season. Growth of bitterbrush was also greater in the former canopy compared with the interspace, potentially due to markedly less perennial vegetation in this microsite. Exotic annual grasses and annual forbs became prevalent in the former canopy in the second and third growing season, suggesting that soil resource availability was greater in this microsite. These results suggest that restoration success will vary by specific locations within a burned landscape and that this variability can be used to improve restoration efficiency. In this situation, bitterbrush restoration can be improved by planting seedlings in former canopy compared with interspace microsites.  相似文献   
68.
69.
Freshwater bivalves have been highly threatened by human activities, and recently their global decline has been causing conservational and social concern. In this paper, we review the most important research events in freshwater bivalve biology calling attention to the main scientific achievements. A great bias exists in the research effort, with much more information available for bivalve species belonging to the Unionida in comparison to other groups. The same is true for the origin of these studies, since the publishing pattern does not always correspond to the hotspots of biodiversity but is concentrated in the northern hemisphere mainly in North America, Europe and Russia, with regions such as Africa and Southeast Asia being quite understudied. We also summarize information about past, present and future perspectives concerning the most important research topics that include taxonomy, systematics, anatomy, physiology, ecology and conservation of freshwater bivalves. Finally, we introduce the articles published in this Hydrobiologia special issue related with the International Meeting on Biology and Conservation of Freshwater Bivalves held in 2012 in Bragança, Portugal.  相似文献   
70.
Distribution ranges of plant species are related to physical variables of ecosystems that limit plant growth. Therefore, each plant species response to physical factors builds up the functional diversity of an ecosystem. The higher the species richness of an ecosystem, the larger the probability of maintaining functions and the higher the potential number of plant functional groups (FGs). Thus, the richness potentially increases the number of functions of the highly diverse Atlantic Rainforest domain in Brazil. Severe plant growth limitations caused by stress, however, decrease species richness. In the Spodosols of the Mussununga, an associated ecosystem of Atlantic Rainforest, the percentage of fine sand is directly related to water retention. Moreover, the depth of the cementation layer in the Mussununga??s sandy soil is a physical factor that can affect the plants?? stress gradients. When a shallow cementation layer depth is combined with low water retention in soils and with low fine sand percentage, the double stresses of flooding in the rainy season and water scarcity in the dry season result. This study aimed to identify FGs among Mussununga plant species responding to water stress gradients of soil and to verify the effects of the gradients on plant species richness of the Mussununga. A canonical correspondence analysis (CCA) of species abundance and soil texture variables was performed on 18 plots in six physiognomies of the Mussununga. Species richness rarefactions were calculated for each vegetation form to compare diversity. The two main axes of the CCA showed two FGs responding to soil texture and cementation layer depth: stress tolerator species and mesic species. Physical variables affect plant diversity, with species richness rising as the fine sand proportion also rises in the Mussununga. The effect of the cementation layer is not significantly related to species richness variation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号