首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5080篇
  免费   420篇
  国内免费   1篇
  5501篇
  2024年   7篇
  2023年   30篇
  2022年   109篇
  2021年   205篇
  2020年   118篇
  2019年   140篇
  2018年   150篇
  2017年   131篇
  2016年   221篇
  2015年   366篇
  2014年   369篇
  2013年   394篇
  2012年   541篇
  2011年   464篇
  2010年   268篇
  2009年   227篇
  2008年   308篇
  2007年   311篇
  2006年   239篇
  2005年   209篇
  2004年   175篇
  2003年   176篇
  2002年   136篇
  2001年   23篇
  2000年   11篇
  1999年   16篇
  1998年   27篇
  1997年   21篇
  1996年   14篇
  1995年   6篇
  1994年   15篇
  1993年   15篇
  1992年   9篇
  1991年   7篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1976年   5篇
  1969年   2篇
  1968年   2篇
  1967年   1篇
  1961年   1篇
  1905年   1篇
排序方式: 共有5501条查询结果,搜索用时 15 毫秒
71.
All eukaryotic cells must segregate their chromosomes equally between two daughter cells at each division. This process needs to be robust, as errors in the form of loss or gain of genetic material have catastrophic effects on viability. Chromosomes are captured, aligned, and segregated to daughter cells via interaction with spindle microtubules mediated by the kinetochore. In Saccharomyces cerevisiae one microtubule attaches to each kinetochore, requiring extreme processivity from this single connection. The yeast Dam1 complex, an essential component of the outer kinetochore, forms rings around microtubules and in vitro recapitulates much of the functionality of a kinetochore-microtubule attachment. To understand the mechanism of the Dam1 complex at the kinetochore, we must know how it binds to microtubules, how it assembles into rings, and how assembly is regulated. We used electron microscopy to map several subunits within the structure of the Dam1 complex and identify the organization of Dam1 complexes within the ring. Of importance, new data strongly support a more passive role for the microtubule in Dam1 ring formation. Integrating this information with previously published data, we generated a structural model for the Dam1 complex assembly that advances our understanding of its function and will direct future experiments.  相似文献   
72.
Strom TS  Anur P  Prislovsky A 《PloS one》2011,6(11):e26657
The study of ex vivo phagocytosis via flow cytometry requires that one distinguish experimentally between uptake and adsorption of fluorescently labeled targets by phagocytes. Removal of the latter quantity from the analysis is the most common means of analyzing such data. Because the probability of phagocytosis is a function of the probability of adsorption, and because partially quenched fluorescence after uptake often overlaps with that of negative controls, this approach is suboptimal at best. Here, we describe a numerical analysis model which overcomes these limitations. We posit that the random adsorption of targets to macrophages, and subsequent phagocytosis, is a function of three parameters: the ratio of targets to macrophages (m), the mean fluorescence intensity imparted to the phagocyte by the internalized target (alpha), and the probability of phagocytosis per adsorbed target (p). The potential values of these parameters define a parameter space and their values at any point in parameter space can be used to predict the fraction of adsorption(+) and [adsorption(-), phagocytosis(+)] cells that might be observed experimentally. By systematically evaluating the points in parameter space for the latter two values and comparing them to experimental data, the model arrives at sets of parameter values that optimally predict such data. Using activated THP-1 cells as macrophages and platelets as targets, we validate the model by demonstrating that it can distinguish between the effects of experimental changes in m, alpha, and p. Finally, we use the model to demonstrate that platelets from a congenitally thrombocytopenic WAS patient show an increased probability of ex vivo phagocytosis. This finding correlates with other evidence that rapid in vivo platelet consumption contributes significantly to the thrombocytopenia of WAS. Our numerical analysis method represents a useful and innovative approach to multivariate analysis.  相似文献   
73.

Background

Leishmania (Viannia) braziliensis has been associated with a broad range of clinical manifestations ranging from a simple cutaneous ulcer to destructive mucosal lesions. Factors leading to this diversity of clinical presentations are not clear, but parasite factors have lately been recognized as important in determining disease progression. Given the fact that the activity of ecto-nucleotidases correlates with parasitism and the development of infection, we evaluated the activity of these enzymes in promastigotes from 23 L. braziliensis isolates as a possible parasite-related factor that could influence the clinical outcome of the disease.

Methodology/Principal Findings

Our results show that the isolates differ in their ability to hydrolyze adenine nucleotides. Furthermore, we observed a positive correlation between the time for peak of lesion development in C57BL/6J mice and enzymatic activity and clinical manifestation of the isolate. In addition, we found that L. (V.) braziliensis isolates obtained from mucosal lesions hydrolyze higher amounts of adenine nucleotides than isolates obtained from skin lesions. One isolate with high (PPS6m) and another with low (SSF) ecto-nucleotidase activity were chosen for further studies. Mice inoculated with PPS6m show delayed lesion development and present larger parasite loads than animals inoculated with the SSF isolate. In addition, PPS6m modulates the host immune response by inhibiting dendritic cell activation and NO production by activated J774 macrophages. Finally, we observed that the amastigote forms from PPS6m and SSF isolates present low enzymatic activity that does not interfere with NO production and parasite survival in macrophages.

Conclusions/Significance

Our data suggest that ecto-nucleotidases present on the promastigote forms of the parasite may interfere with the establishment of the immune response with consequent impaired ability to control parasite dissemination and this may be an important factor in determining the clinical outcome of leishmaniasis.  相似文献   
74.
75.

Aims

We assessed and quantified the cumulative impact of 20 years of biomass management on the nature and bioavailability of soil phosphorus (P) accumulated from antecedent fertiliser inputs.

Methods

Soil (0–2.5, 2.5–5, 5–10 cm) and plant samples were taken from replicate plots in a grassland field experiment maintained for 20 years under contrasting plant biomass regimen- biomass retained or removed after mowing. Analyses included dry matter production and P uptake, root biomass, total soil carbon (C), total nitrogen (N), total P, soil P fractionation, and 31P NMR spectroscopy.

Results

Contemporary plant production and P uptake were over 2-fold higher for the biomass retained compared with the biomass removed regimes. Soil C, total P, soluble and labile forms of inorganic and organic soil P were significantly higher under biomass retention than removal.

Conclusions

Reserves of soluble and labile inorganic P in soil were significantly depleted in response to continued long-term removal of P in plant biomass compared to retention. However, this was only sufficient to sustain plant production at half the level observed for the biomass retention after 20 years, which was partly attributed to limited mobilisation of organic P in response to P removal.
  相似文献   
76.
77.
78.
79.
The degradation of collagens, the most abundant proteins of the extracellular matrix, is involved in numerous physiological and pathological conditions including cancer invasion. An important turnover pathway involves cellular internalization and degradation of large, soluble collagen fragments, generated by initial cleavage of the insoluble collagen fibers. We have previously observed that in primary mouse fibroblasts, this endocytosis of collagen fragments is dependent on the receptor urokinase plasminogen activator receptor-associated protein (uPARAP)/Endo180. Others have identified additional mechanisms of collagen uptake, with different associated receptors, in other cell types. These receptors include β1-integrins, being responsible for collagen phagocytosis, and the mannose receptor. We have now utilized a newly developed monoclonal antibody against uPARAP/Endo180, which down-regulates the receptor protein level on treated cells, to examine the role of uPARAP/Endo180 as a mediator of collagen internalization by a wide range of cultured cell types. With the exception of macrophages, all cells that proved capable of efficient collagen internalization were of mesenchymal origin and all of these utilized uPARAP/Endo180 for their collagen uptake process. Macrophages internalized collagen in a process mediated by the mannose receptor, a protein belonging to the same protein family as uPARAP/Endo180. β1-Integrins were found not to be involved in the endocytosis of soluble collagen, irrespectively of whether this was mediated by uPARAP/Endo180 or the mannose receptor. This further distinguishes these pathways from the phagocytic uptake of particulate collagen.  相似文献   
80.
Assembly of each Salmonella typhimurium flagellum filament requires export and polymerisation of ca. 30000 flagellin (FliC) subunits. This is facilitated by the cytosolic chaperone FliS, which binds to the 494 residue FliC and inhibits its polymerisation. Yeast two-hybrid assays, co-purification and affinity blotting showed that FliS binds specifically to the C-terminal 40 amino acid component of the disordered D0 domain central to polymerisation. Without FliS binding, the C-terminus is degraded. Our data provide further support for the view that FliS is a domain-specific bodyguard preventing premature monomer interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号