首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5108篇
  免费   421篇
  国内免费   1篇
  5530篇
  2024年   7篇
  2023年   30篇
  2022年   109篇
  2021年   205篇
  2020年   118篇
  2019年   140篇
  2018年   150篇
  2017年   131篇
  2016年   221篇
  2015年   367篇
  2014年   371篇
  2013年   394篇
  2012年   544篇
  2011年   466篇
  2010年   268篇
  2009年   228篇
  2008年   308篇
  2007年   313篇
  2006年   239篇
  2005年   211篇
  2004年   177篇
  2003年   177篇
  2002年   136篇
  2001年   24篇
  2000年   11篇
  1999年   16篇
  1998年   27篇
  1997年   21篇
  1996年   15篇
  1995年   6篇
  1994年   15篇
  1993年   15篇
  1992年   9篇
  1991年   8篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1976年   5篇
  1969年   3篇
  1968年   2篇
  1905年   1篇
排序方式: 共有5530条查询结果,搜索用时 15 毫秒
71.
72.
To characterize the repair pathways of chromosome double-strand breaks (DSBs), one approach involves monitoring the repair of site-specific DSBs generated by rare-cutting endonucleases, such as I-SceI. Using this method, we first describe the roles of Ercc1, Msh2, Nbs1, Xrcc4, and Brca1 in a set of distinct repair events. Subsequently, we considered that the outcome of such assays could be influenced by the persistent nature of I-SceI-induced DSBs, in that end-joining (EJ) products that restore the I-SceI site are prone to repeated cutting. To address this aspect of repair, we modified I-SceI-induced DSBs by co-expressing I-SceI with a non-processive 3′ exonuclease, Trex2, which we predicted would cause partial degradation of I-SceI 3′ overhangs. We find that Trex2 expression facilitates the formation of I-SceI-resistant EJ products, which reduces the potential for repeated cutting by I-SceI and, hence, limits the persistence of I-SceI-induced DSBs. Using this approach, we find that Trex2 expression causes a significant reduction in the frequency of repair pathways that result in substantial deletion mutations: EJ between distal ends of two tandem DSBs, single-strand annealing, and alternative-NHEJ. In contrast, Trex2 expression does not inhibit homology-directed repair. These results indicate that limiting the persistence of a DSB causes a reduction in the frequency of repair pathways that lead to significant genetic loss. Furthermore, we find that individual genetic factors play distinct roles during repair of non-cohesive DSB ends that are generated via co-expression of I-SceI with Trex2.  相似文献   
73.
The use of cell walls to produce cellulosic ethanol from sugarcane bagasse is a new challenge. A better knowledge of proteins involved in cell wall remodelling is essential to improve the saccharification processes. Cell suspension cultures were used for this first cell wall proteomics study of sugarcane. Proteins extracted from cell walls were identified using an adapted protocol. They were extracted using 0.2 M CaCl2 and 2 M LiCl after purification of cell walls. The proteins were then identified by the innovative nanoACQUITY UPLC MS/MS technology and bioinformatics using the translated SUCEST EST cluster database of sugarcane. The experiments were reproduced three times. Since Sorghum bicolor is the closest plant with a fully sequenced genome, homologous proteins were searched for to complete the annotation of proteins, that is, prediction of subcellular localization and functional domains. Altogether, 69 different proteins predicted to be secreted were identified among 377 proteins. The reproducibility of the experiments is discussed. These proteins were distributed into eight functional classes. Oxidoreductases such as peroxidases were well represented, whereas glycoside hydrolases were scarce. This work provides information about the proteins that could be manipulated through genetic transformation, to increase second‐generation ethanol production.  相似文献   
74.

Background  

Radial chromosome positioning in interphase nuclei is nonrandom and can alter according to developmental, differentiation, proliferation, or disease status. However, it is not yet clear when and how chromosome repositioning is elicited.  相似文献   
75.
76.
Vacuolar myelinopathy (VM) is a neurologic disease primarily found in birds that occurs when wildlife ingest submerged aquatic vegetation colonized by an uncharacterized toxin-producing cyanobacterium (hereafter “UCB” for “uncharacterized cyanobacterium”). Turtles are among the closest extant relatives of birds and many species directly and/or indirectly consume aquatic vegetation. However, it is unknown whether turtles can develop VM. We conducted a feeding trial to determine whether painted turtles (Chrysemys picta) would develop VM after feeding on Hydrilla (Hydrilla verticillata), colonized by the UCB (Hydrilla is the most common “host” of UCB). We hypothesized turtles fed Hydrilla colonized by the UCB would exhibit neurologic impairment and vacuolation of nervous tissues, whereas turtles fed Hydrilla free of the UCB would not. The ability of Hydrilla colonized by the UCB to cause VM (hereafter, “toxicity”) was verified by feeding it to domestic chickens (Gallus gallus domesticus) or necropsy of field collected American coots (Fulica americana) captured at the site of Hydrilla collections. We randomly assigned ten wild-caught turtles into toxic or non-toxic Hydrilla feeding groups and delivered the diets for up to 97 days. Between days 82 and 89, all turtles fed toxic Hydrilla displayed physical and/or neurologic impairment. Histologic examination of the brain and spinal cord revealed vacuolations in all treatment turtles. None of the control turtles exhibited neurologic impairment or had detectable brain or spinal cord vacuolations. This is the first evidence that freshwater turtles can become neurologically impaired and develop vacuolations after consuming toxic Hydrilla colonized with the UCB. The southeastern United States, where outbreaks of VM occur regularly and where vegetation colonized by the UCB is common, is also a global hotspot of freshwater turtle diversity. Our results suggest that further investigations into the effect of the putative UCB toxin on wild turtles in situ are warranted.  相似文献   
77.

Background

The application of metabolomics in epidemiological studies would potentially allow researchers to identify biomarkers associated with exposures and diseases. However, within-individual variability of metabolite levels caused by temporal variation of metabolites, together with technical variability introduced by laboratory procedures, may reduce the study power to detect such associations. We assessed the sources of variability of metabolites from urine samples and the implications for designing epidemiologic studies.

Methods

We measured 539 metabolites in urine samples from the Navy Colon Adenoma Study using liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectroscopy (GC-MS). The study collected 2–3 samples per person from 17 male subjects (age 38–70) over 2–10 days. We estimated between-individual, within-individual, and technical variability and calculated expected study power with a specific focus on large case-control and nested case-control studies.

Results

Overall technical reliability was high (median intraclass correlation = 0.92), and for 72% of the metabolites, the majority of total variance can be attributed to between-individual variability. Age, gender and body mass index explained only a small proportion of the total metabolite variability. For a relative risk (comparing upper and lower quartiles of “usual” levels) of 1.5, we estimated that a study with 500, 1,000, and 5,000 individuals could detect 1.0%, 4.5% and 75% of the metabolite associations.

Conclusions

The use of metabolomics in urine samples from epidemiological studies would require large sample sizes to detect associations with moderate effect sizes.  相似文献   
78.
79.

Background and Aims

The main assemblage of the grass subfamily Chloridoideae is the largest known clade of C4 plant species, with the notable exception of Eragrostis walteri Pilg., whose leaf anatomy has been described as typical of C3 plants. Eragrostis walteri is therefore classically hypothesized to represent an exceptional example of evolutionary reversion from C4 to C3 photosynthesis. Here this hypothesis is tested by verifying the photosynthetic type of E. walteri and its classification.

Methods

Carbon isotope analyses were used to determine the photosynthetic pathway of several E. walteri accessions, and phylogenetic analyses of plastid rbcL and ndhF and nuclear internal transcribed spacer DNA sequences were used to establish the phylogenetic position of the species.

Results

Carbon isotope analyses confirmed that E. walteri is a C3 plant. However, phylogenetic analyses demonstrate that this species has been misclassified, showing that E. walteri is positioned outside Chloridoideae in Arundinoideae, a subfamily comprised entirely of C3 species.

Conclusions

The long-standing hypothesis of C4 to C3 reversion in E. walteri is rejected, and the classification of this species needs to be re-evaluated.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号