首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5477篇
  免费   440篇
  国内免费   1篇
  2024年   4篇
  2023年   25篇
  2022年   110篇
  2021年   210篇
  2020年   120篇
  2019年   146篇
  2018年   155篇
  2017年   137篇
  2016年   227篇
  2015年   383篇
  2014年   391篇
  2013年   422篇
  2012年   581篇
  2011年   488篇
  2010年   289篇
  2009年   238篇
  2008年   332篇
  2007年   337篇
  2006年   256篇
  2005年   227篇
  2004年   192篇
  2003年   191篇
  2002年   146篇
  2001年   29篇
  2000年   20篇
  1999年   28篇
  1998年   29篇
  1997年   24篇
  1996年   17篇
  1995年   8篇
  1994年   18篇
  1993年   19篇
  1992年   12篇
  1991年   12篇
  1990年   5篇
  1989年   9篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   8篇
  1984年   7篇
  1983年   6篇
  1982年   6篇
  1981年   6篇
  1979年   5篇
  1978年   3篇
  1976年   6篇
  1973年   3篇
  1969年   2篇
  1968年   2篇
排序方式: 共有5918条查询结果,搜索用时 0 毫秒
11.
Toxin–antitoxin (TA) systems are small genetic elements that typically encode a stable toxin and its labile antitoxin. These cognate pairs are abundant in prokaryotes and have been shown to regulate various cellular functions. Vibrio cholerae, a human pathogen that is the causative agent of cholera, harbors at least thirteen TA loci. While functional HigBA, ParDE have been shown to stabilize plasmids and Phd/Doc to mediate cell death in V. cholerae, the function of seven RelBE-family TA systems is not understood. In this study we investigated the function of the RelBE TA systems in V. cholerae physiology and found that six of the seven relBE loci encoded functional toxins in E. coli. Deletion analyses of each relBE locus indicate that RelBE systems are involved in biofilm formation and reactive oxygen species (ROS) resistance. Interestingly, all seven relBE loci are induced under the standard virulence induction conditions and two of the relBE mutants displayed a colonization defect, which was not due to an effect on virulence gene expression. Although further studies are needed to characterize the mechanism of action, our study reveals that RelBE systems are important for V. cholerae physiology.  相似文献   
12.
13.
Therapeutic proteins are utilized in a variety of clinical applications, but side effects and rapid in vivo clearance still present hurdles. An approach that addresses both drawbacks is protein encapsulation within in a polymeric nanoparticle, which is effective but introduces the additional challenge of destabilizing the nanoparticle shell in clinically relevant locations. This study examined the effects of crosslinking self-assembled poly(l -lysine)-grafted-poly(ethylene glycol) nanoparticles with redox-responsive 3,3′-dithiobis(sulfosuccinimidyl propionate) (DTSSP) to achieve nanoparticle destabilization in a reductive environment. The polymer-protein nanoparticles (DTSSP NPs) were formed through electrostatic self-assembly and crosslinked with DTSSP, which contains a glutathione-reducible disulfide. As glutathione is upregulated in various cancers, DTSSP NPs could display destabilization within cancer cells. A library of DTSSP NPs was formed with varying copolymer to protein (C:P) and crosslinker to protein (X:P) mass ratios and characterized by size and encapsulation efficiency. DTSSP NPs with a 7:1 C:P ratio and 2:1 X:P ratio were further characterized by stability in the presence proteases and reducing agents. DTSSP NPs fully encapsulated the model protein and displayed 81% protein release when incubated with 5 mM dithiothreitol for 12 hr. This study contributes to understanding stimulus-responsive crosslinking of polymeric nanoparticles and could be foundational to clinical administration of therapeutic proteins.  相似文献   
14.
15.
Protein synthesis and lipid peroxidation were evaluated in rat liver slices incubated in the presence of oxidants and protein synthesis inhibitors. Protein synthesis by rat liver slices was evaluated by [3H]leucine incorporation into the trichloroacetic acid (TCA)-insoluble material, and lipid peroxidation was evaluated by thiobarbituric acid-reactive substances (TBARS) released into the incubation medium. Protein synthesis inhibition by bromotrichloromethane (BrCCl3) or t-butyl hydroperoxide (t-BOOH) depended on the incubation time and oxidant concentration. [3H]Leucine incorporation was decreased to 20 and 47% of control values and TBARS were enhanced from the control value of 16.9 to 45.3 and 62.5 nmol/g of liver by incubation for 1 h with 1 mM BrCCl3 and t-BOOH, respectively. Following incubation, both protein synthesis damage and lipid peroxidation were decreased in control and oxidant-treated slices prepared from rats injected with 200 mg of DL-alpha-tocopherol/kg of body wt. Release of lactate dehydrogenase was not enhanced by oxidant treatment. Protein synthesis inhibitors reversibly decreased [3H]leucine incorporation, but the effect of oxidants on protein synthesis was irreversible. Cumene hydroperoxide and methyl ethyl ketone peroxide, but not hydrogen peroxide, damaged protein synthesis and induced lipid peroxidation. The ability of carbon tetrabromide, benzyl chloride, bromoform, bromobenzene, carbon tetrachloride, chloroform, dichloromethane, and bromochloromethane to inhibit protein synthesis was correlated with their ability to induce lipid peroxidation, and with their LD50. The results suggest that oxidant-induced lipid peroxidation and protein synthesis damage occurred concurrently, and that protein synthesis inhibition may be involved in cell injury or death mediated by free radicals.  相似文献   
16.
Summary The expression of many secreted recombinant proteins in Gram-negative bacteria is limited by degradation in the periplasmic space. We have previously shown that the production of protein A--lactamase, a secreted fusion protein highly sensitive to proteolysis in Escherichia coli, can be increased in mutant strains deficient in up to three cell-envelope-associated proteolytic activities. In this work we investigated the effect of fermentation conditions on suppressing any residual proteolytic activity in various protease-deficient strains. Optimal production of the fusion protein was observed in cells grown under mildly acidic conditions (5.5pH6.0) and at low temperatures. These conditios were shown to specifically decrease the rate of proteolysis. In addition, a further increase in production was observed in cultures supplemented with 0.5 to 0.75 mM zinc chloride. This may relate to the inhibition of a cell envelope protease by Zn2+ ions. Offsprint requests to: G. Georgiou  相似文献   
17.
Summary The osmium tetroxide-zinc iodide fixative of Champy-Maillet has been used to study the rat's retina at the electron microscope level. Electron opaque deposits were observed all along the photoreceptor cells and concentrated in the outer segments of rods and cones and in the nerve endings. In the outer segments that deposits are located in the inter and intra disk spaces as well as between the disk and outer membranes. In the outer plexiform layer reactive sites include synaptic vesicles and mitochondria; other minor reactive sites are described in the inner segment and inner plexiform layer.Electron opaque deposits were not seen if potassium iodide substitutes zinc iodide in the fixative. However, if osmium tetroxide-potassium iodide fixed retinae are immersed in osmium tetroxide-zinc iodide the characteristic electron-dense material is evidenced at those same sites. The effect of other several fixatives were studied with a similar double fixation procedure. Our finding points to the histochemical demonstration of an unidentified component (s) of the retina which shows a striking specificity of localization and which is made evident when zinc iodide is used in the Champy-Maillet mixture.This work has been supported by grants of the Consejo Nacional de Investigaciones Cientificas y Técnicas, Argentina and U.S. Air Force AF-AFOSR 67-0963 A.We are greatly indebted to Miss Haydée Agoff and to Mr. Alberto Saenz for their skillful technical assistance.  相似文献   
18.
The human platelet contains a functional 5-hydroxytryptamine (5-HT) receptor that appears to resemble the 5-HT2 subtype. In this study, we have used the iodinated derivative [125I]iodolysergic acid diethylamide ([125I]iodoLSD) in an attempt to label 5-HT receptors in human platelet and frontal cortex membranes under identical assay conditions to compare the sites labelled in these two tissues. In human frontal cortex, [125I]iodoLSD labelled a single high-affinity site (KD = 0.35 +/- 0.02 nM). Displacement of specific [125I]iodoLSD binding indicated a typical 5-HT2 receptor inhibition profile, which demonstrated a significant linear correlation (r = 0.97, p less than 0.001, n = 17) with that observed using [3H]ketanserin. However, [125I]iodoLSD (Bmax = 136 +/- 7 fmol/mg of protein) labelled significantly fewer sites than [3H]ketanserin (Bmax = 258 +/- 19 fmol/mg of protein) (p less than 0.001, n = 6). In human platelet membranes, [125I]iodoLSD labelled a single site with affinity (KD = 0.37 +/- 0.03 nM) similar to that in frontal cortex. The inhibition profile in the platelet showed significant correlation with that in frontal cortex (r = 0.96, p less than 0.001, n = 16). We conclude that the site labelled by [125I]iodoLSD in human platelet membranes is biochemically similar to that in frontal cortex and most closely resembles the 5-HT2 receptor subtype, although the discrepancy in binding capacities of [125I]iodoLSD and [3H]ketanserin raises a question about the absolute nature of this receptor.  相似文献   
19.
20.
Although it is well-accepted that the phosphatidylinositol signalling transduction pathway, producing inositol-1,4,5-P3 (InsP3) and inositol-1,3,4,5-P4 (InsP4) as second messengers, functions in heart muscle, virtually nothing is known about the roles of the higher inositol polyphosphates such as inositolhexakisphosphate (InsP6). This study demonstrates that InSP6 has the ability to bind intracellularly, with different binding characteristics, to different myocardial membranes. Binding to purified sarcoplasmic reticulum (SR) membranes, purified sarcolemmal (SL) membranes as well as to viable mitochondria were characterized. Binding to all these membranes display high as well as low affinity binding sites, with differing affinities. Kd values of binding to SR were 32 and 383 nM, to SL 61 and 1312 nM, while those of mitochondrial binding were 230 and 2200 nM respectively.InsP4 binding was also investigated and displayed the following characteristics: to SR, one low affinity binding site (Kd = 203 nM) and to SL, a high as well as a low affinity binding site with Kd values of 41 and 2075 nM respectively. Presence of InsP3, the second messenger for SR calcium release, at concentrations of 1 nM, elevated the binding of InsP4 to SR and SL by a mean of 30% and 20% respectively.Fractionation of SR and SL membranes on sucrose density gradients, after solubilization with CHAPS, indicated that InsP6 bound to two separate protein peaks in both these membranes, while InsP4 bound to only one. In SR membranes, InsP4 bound preferentially to a protein separating at high sucrose density while it bound to a protein separating at low sucrose density in SL membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号