首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5174篇
  免费   425篇
  国内免费   1篇
  5600篇
  2024年   7篇
  2023年   31篇
  2022年   111篇
  2021年   207篇
  2020年   119篇
  2019年   140篇
  2018年   151篇
  2017年   133篇
  2016年   223篇
  2015年   370篇
  2014年   378篇
  2013年   398篇
  2012年   547篇
  2011年   467篇
  2010年   272篇
  2009年   227篇
  2008年   314篇
  2007年   313篇
  2006年   242篇
  2005年   212篇
  2004年   176篇
  2003年   176篇
  2002年   139篇
  2001年   25篇
  2000年   13篇
  1999年   20篇
  1998年   32篇
  1997年   23篇
  1996年   15篇
  1995年   8篇
  1994年   15篇
  1993年   15篇
  1992年   11篇
  1991年   12篇
  1990年   5篇
  1989年   5篇
  1988年   5篇
  1987年   2篇
  1986年   5篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1979年   2篇
  1976年   7篇
  1973年   4篇
  1969年   2篇
  1968年   2篇
  1961年   1篇
  1905年   1篇
排序方式: 共有5600条查询结果,搜索用时 15 毫秒
131.
The 26S proteasome is essential for the proteolysis of proteins that have been covalently modified by the attachment of polyubiquitinated chains. Although the 20S core particle performs the degradation, the 19S regulatory cap complex is responsible for recognition of polyubiquitinated substrates. We have focused on how the S5a component of the 19S complex interacts with different ubiquitin-like (ubl) modules, to advance our understanding of how polyubiquitinated proteins are targeted to the proteasome. To achieve this, we have determined the solution structure of the ubl domain of hPLIC-2 and obtained a structural model of hHR23a by using NMR spectroscopy and homology modeling. We have also compared the S5a binding properties of ubiquitin, SUMO-1, and the ubl domains of hPLIC-2 and hHR23a and have identified the residues on their respective S5a contact surfaces. We provide evidence that the S5a-binding surface on the ubl domain of hPLIC-2 is required for its interaction with the proteasome. This study provides structural insights into protein recognition by the proteasome, and illustrates how the protein surface of a commonly utilized fold has highly evolved for various biological roles.  相似文献   
132.
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2.  相似文献   
133.

Objective(s)

To determine if mishandling prior to testing would make a sample from a chronically infected subject appear recently infected when tested by cross-sectional HIV incidence assays.

Methods

Serum samples from 31 subjects with chronic HIV infection were tested. Samples were subjected to different handling conditions, including incubation at 4°C, 25°C and 37°C, for 1, 3, 7 or 15 days prior to testing. Samples were also subjected to 1,3, 7 and 15 freeze-thaw cycles prior to testing. Samples were tested using the BED capture enzyme immuno assay (BED-CEIA), Vironostika-less sensitive (V-LS), and an avidity assay using the Genetic Systems HIV-1/HIV-2 plus O EIA (avidity assay).

Results

Compared to the sample that was not subjected to any mishandling conditions, for the BED-CEIA, V-LS and avidity assay, there was no significant change in test results for samples incubated at 4°C or 25°C prior to testing. No impact on test results occurred after 15 freeze-thaw cycles. A decrease in assay results was observed when samples were held for 3 days or longer at 37°C prior to testing.

Conclusions

Samples can be subjected up to 15 freeze-thaw cycles without affecting the results the BED-CEIA, Vironostika-LS, or avidity assays. Storing samples at 4°C or 25°C for up to fifteen days prior to testing had no impact on test results. However, storing samples at 37°C for three or more days did affect results obtained with these assays.  相似文献   
134.
EGFR mutations correlate with improved clinical outcome whereas KRAS mutations are associated with lack of response to tyrosine kinase inhibitors in patients with non-small cell lung cancer (NSCLC). Endobronchial ultrasound (EBUS)-transbronchial needle aspiration (TBNA) is being increasingly used in the management of NSCLC. Co-amplification at lower denaturation temperature (COLD)-polymerase chain reaction (PCR) (COLD-PCR) is a sensitive assay for the detection of genetic mutations in solid tumours. This study assessed the feasibility of using COLD-PCR to screen for EGFR and KRAS mutations in cytology samples obtained by EBUS-TBNA in routine clinical practice. Samples obtained from NSCLC patients undergoing EBUS-TBNA were evaluated according to our standard clinical protocols. DNA extracted from these samples was subjected to COLD-PCR to amplify exons 18-21 of EGFR and exons two and three of KRAS followed by direct sequencing. Mutation analysis was performed in 131 of 132 (99.3%) NSCLC patients (70F/62M) with confirmed lymph node metastases (94/132 (71.2%) adenocarcinoma; 17/132 (12.8%) squamous cell; 2/132 (0.15%) large cell neuroendocrine; 1/132 (0.07%) large cell carcinoma; 18/132 (13.6%) NSCL-not otherwise specified (NOS)). Molecular analysis of all EGFR and KRAS target sequences was achieved in 126 of 132 (95.5%) and 130 of 132 (98.4%) of cases respectively. EGFR mutations were identified in 13 (10.5%) of fully evaluated cases (11 in adenocarcinoma and two in NSCLC-NOS) including two novel mutations. KRAS mutations were identified in 23 (17.5%) of fully analysed patient samples (18 adenocarcinoma and five NSCLC-NOS). We conclude that EBUS-TBNA of lymph nodes infiltrated by NSCLC can provide sufficient tumour material for EGFR and KRAS mutation analysis in most patients, and that COLD-PCR and sequencing is a robust screening assay for EGFR and KRAS mutation analysis in this clinical context.  相似文献   
135.
The Saccharomyces cerevisiae F(1)F(0)-ATP synthase peripheral stalk is composed of the OSCP, h, d, and b subunits. The b subunit has two membrane-spanning domains and a large hydrophilic domain that extends along one side of the enzyme to the top of F(1). In contrast, the Escherichia coli peripheral stalk has two identical b subunits, and subunits with substantially altered lengths can be incorporated into a functional F(1)F(0)-ATP synthase. The differences in subunit structure between the eukaryotic and prokaryotic peripheral stalks raised a question about whether the two stalks have similar physical and functional properties. In the present work, the length of the S. cerevisiae b subunit has been manipulated to determine whether the F(1)F(0)-ATP synthase exhibited the same tolerances as in the bacterial enzyme. Plasmid shuffling was used for ectopic expression of altered b subunits in a strain carrying a chromosomal disruption of the ATP4 gene. Wild type growth phenotypes were observed for insertions of up to 11 and a deletion of four amino acids on a nonfermentable carbon source. In mitochondria-enriched fractions, abundant ATP hydrolysis activity was seen for the insertion mutants. ATPase activity was largely oligomycin-insensitive in these mitochondrial fractions. In addition, very poor complementation was seen in a mutant with an insertion of 14 amino acids. Lengthier deletions yielded a defective enzyme. The results suggest that although the eukaryotic peripheral stalk is near its minimum length, the b subunit can be extended a considerable distance.  相似文献   
136.
Environmental PCR is a common tool for surveying aquatic microalgae; however, universal primers generally employed are not specific to phytoplankton and typically recover nonphotosynthetic bacteria at high frequencies. Using a 16S rDNA “phyto‐specific” primer, we were able to selectively amplify sequences of photosynthetic species from several mixed aquatic samples, even when large numbers of nonphotosynthetic microorganisms were present. We identified 21 microalgal sequences from three different habitats: salt marshes in Virginia, river basins in North Carolina, and sea ice in Alaska. In contrast, universal 16S primers recovered a majority of nonphotosynthetic organisms from some of the same samples. Our results indicate that phytoplankton‐specific primers are efficient in selectively amplifying a broad diversity of microalgae in mixed environmental samples and, therefore, can reduce the noise from extraneous species that often dominates molecular surveys of aquatic samples.  相似文献   
137.
138.
139.
Vibrio parahaemolyticus is a Gram-negative, halophilic bacterium found commonly in temperate and warm estuarine waters worldwide. V. parahaemolyticus is considered an emerging bacterial pathogen in Europe and has been responsible for several recent seafood-associated outbreaks. During ad hoc testing of raw shellfish produce in May 2012, pandemic group (O3:K6) V. parahaemolyticus was isolated from Pacific oysters (Crassostrea gigas), harvested in Southern England. Follow-on testing of water and shellfish, encompassing a small number geographically diverse sites, also retrieved pandemic group isolates. These strains are amongst the most northerly pandemic strains described to date and represent the first instance of pandemic V. parahaemolyticus isolated in the UK, highlighting the expanding geographical distribution of these foodborne pathogens in the environment.  相似文献   
140.
Resurgent Na current flows as voltage-gated Na channels recover through open states from block by an endogenous open-channel blocking protein, such as the NaVβ4 subunit. The open-channel blocker and fast-inactivation gate apparently compete directly, as slowing the onset of fast inactivation increases resurgent currents by favoring binding of the blocker. Here, we tested whether open-channel block is also sensitive to deployment of the DIV voltage sensor, which facilitates fast inactivation. We expressed NaV1.4 channels in HEK293t cells and assessed block by a free peptide replicating the cytoplasmic tail of NaVβ4 (the “β4 peptide”). Macroscopic fast inactivation was disrupted by mutations of DIS6 (L443C/A444W; “CW” channels), which reduce fast-inactivation gate binding, and/or by the site-3 toxin ATX-II, which interferes with DIV movement. In wild-type channels, the β4 peptide competed poorly with fast inactivation, but block was enhanced by ATX. With the CW mutation, large peptide-induced resurgent currents were present even without ATX, consistent with increased open-channel block upon depolarization and slower deactivation after blocker unbinding upon repolarization. The addition of ATX greatly increased transient current amplitudes and further enlarged resurgent currents, suggesting that pore access by the blocker is actually decreased by full deployment of the DIV voltage sensor. ATX accelerated recovery from block at hyperpolarized potentials, however, suggesting that the peptide unbinds more readily when DIV voltage-sensor deployment is disrupted. These results are consistent with two open states in Na channels, dependent on the DIV voltage-sensor position, which differ in affinity for the blocking protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号