首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6932篇
  免费   605篇
  国内免费   2篇
  7539篇
  2024年   8篇
  2023年   36篇
  2022年   123篇
  2021年   243篇
  2020年   139篇
  2019年   156篇
  2018年   172篇
  2017年   159篇
  2016年   263篇
  2015年   459篇
  2014年   473篇
  2013年   496篇
  2012年   664篇
  2011年   600篇
  2010年   371篇
  2009年   303篇
  2008年   436篇
  2007年   451篇
  2006年   375篇
  2005年   335篇
  2004年   268篇
  2003年   268篇
  2002年   217篇
  2001年   44篇
  2000年   20篇
  1999年   44篇
  1998年   56篇
  1997年   40篇
  1996年   34篇
  1995年   16篇
  1994年   21篇
  1993年   36篇
  1992年   24篇
  1991年   18篇
  1990年   15篇
  1989年   13篇
  1988年   16篇
  1987年   15篇
  1986年   8篇
  1985年   11篇
  1984年   10篇
  1983年   8篇
  1982年   16篇
  1981年   10篇
  1980年   7篇
  1979年   8篇
  1976年   8篇
  1974年   3篇
  1966年   2篇
  1943年   2篇
排序方式: 共有7539条查询结果,搜索用时 15 毫秒
51.
Clathrin-mediated endocytosis has long been viewed as a process driven by core endocytic proteins, with internalized cargo proteins being passive. In contrast, an emerging view suggests that signaling receptor cargo may actively control its fate by regulating the dynamics of clathrin-coated pits (CCPs) that mediate their internalization. Despite its physiological implications, very little is known about such “cargo-mediated regulation” of CCPs by signaling receptors. Here, using multicolor total internal reflection fluorescence microscopy imaging and quantitative analysis in live cells, we show that the μ-opioid receptor, a physiologically relevant G protein–coupled signaling receptor, delays the dynamics of CCPs in which it is localized. This delay is mediated by the interactions of two critical leucines on the receptor cytoplasmic tail. Unlike the previously known mechanism of cargo-mediated regulation, these residues regulate the lifetimes of dynamin, a key component of CCP scission. These results identify a novel means for selectively controlling the endocytosis of distinct cargo that share common trafficking components and indicate that CCP regulation by signaling receptors can operate via divergent modes.  相似文献   
52.
A new method for the removal of the stabilizing substrate, deoxycorticosterone, from adrenal cytochrome P-45011β, has been developed. Dextran coated charcoal is used for the adsorption of the steroid and the adsorbed steroid is separated from the cytochrome P-450-preparation by low speed centrifugation. The substrate-free enzyme, obtained in this manner, has all the characteristic spectral properties of low-spin cytochrome P-45011β, and may be converted to the high-spin form by the addition of deoxycorticosterone.

The dextran coated charcoal method has the following advantages over the previously used method of substrate removal. It does not require the addition of the cofactors for cytochrome P-450-dependant hydroxyla-tion of deoxycorticosterone, small amounts of enzyme may be prepared in a short time and the enzyme preparation is not diluted to any great extent during the process.  相似文献   
53.

Background

Select retrotransposons in the long terminal repeat (LTR) class exhibit interindividual variation in DNA methylation that is altered by developmental environmental exposures. Yet, neither the full extent of variability at these “metastable epialleles,” nor the phylogenetic relationship underlying variable elements is well understood. The murine metastable epialleles, Avy and CabpIAP, result from independent insertions of an intracisternal A particle (IAP) mobile element, and exhibit remarkably similar sequence identity (98.5%).

Results

Utilizing the C57BL/6 genome we identified 10802 IAP LTRs overall and a subset of 1388 in a family that includes Avy and CabpIAP. Phylogenetic analysis revealed two duplication and divergence events subdividing this family into three clades. To characterize interindividual variation across clades, liver DNA from 17 isogenic mice was subjected to combined bisulfite and restriction analysis (CoBRA) for 21 separate LTR transposons (7 per clade). The lowest and highest mean methylation values were 59% and 88% respectively, while methylation levels at individual LTRs varied widely, ranging from 9% to 34%. The clade with the most conserved elements had significantly higher mean methylation across LTRs than either of the two diverged clades (p?=?0.040 and p?=?0.017). Within each mouse, average methylation across all LTRs was not significantly different (71%-74%, p?>?0.99).

Conclusions

Combined phylogenetic and DNA methylation analysis allows for the identification of novel regions of variable methylation. This approach increases the number of known metastable epialleles in the mouse, which can serve as biomarkers for environmental modifications to the epigenome.  相似文献   
54.
Adult male ICR mice were treated by intraperitoneal injection with 250?mg/kg of bodyweight of commercial malathion (a dose corresponding to 1/12 the LD50). After 6?h, acetylcholinesterase (AChE) activity in blood, liver, and six brain regions was determined. A statistically significant inhibition was observed in whole blood (23%), liver (21%), and, in particular, the central nervous system; the greatest degree of AChE inhibition was observed in the cerebellum (45%), followed by the hippocampus (29%). There was no significant change in AChE activity in the caudate putamen, frontal cortex, midbrain, or pons medulla. These results demonstrate that the magnitude of AChE inhibition in peripheral tissues does not accurately reflect the central-inhibitory effects of malathion on AChE activity in specific brain regions.  相似文献   
55.
56.
Elevated atmospheric CO2 concentrations ([CO2]) generally increase primary production of terrestrial ecosystems. Production responses to elevated [CO2] may be particularly large in deserts, but information on their long‐term response is unknown. We evaluated the cumulative effects of elevated [CO2] on primary production at the Nevada Desert FACE (free‐air carbon dioxide enrichment) Facility. Aboveground and belowground perennial plant biomass was harvested in an intact Mojave Desert ecosystem at the end of a 10‐year elevated [CO2] experiment. We measured community standing biomass, biomass allocation, canopy cover, leaf area index (LAI), carbon and nitrogen content, and isotopic composition of plant tissues for five to eight dominant species. We provide the first long‐term results of elevated [CO2] on biomass components of a desert ecosystem and offer information on understudied Mojave Desert species. In contrast to initial expectations, 10 years of elevated [CO2] had no significant effect on standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground components. However, elevated [CO2] increased short‐term responses, including leaf water‐use efficiency (WUE) as measured by carbon isotope discrimination and increased plot‐level LAI. Standing biomass, biomass allocation, canopy cover, and C : N ratios of above‐ and belowground pools significantly differed among dominant species, but responses to elevated [CO2] did not vary among species, photosynthetic pathway (C3 vs. C4), or growth form (drought‐deciduous shrub vs. evergreen shrub vs. grass). Thus, even though previous and current results occasionally show increased leaf‐level photosynthetic rates, WUE, LAI, and plant growth under elevated [CO2] during the 10‐year experiment, most responses were in wet years and did not lead to sustained increases in community biomass. We presume that the lack of sustained biomass responses to elevated [CO2] is explained by inter‐annual differences in water availability. Therefore, the high frequency of low precipitation years may constrain cumulative biomass responses to elevated [CO2] in desert environments.  相似文献   
57.
58.
In eukaryotic cells short-lived proteins are degraded in a specific process by the ubiquitin-proteasome system (UPS), whereas long-lived proteins and damaged organelles are degraded by macroautophagy (hereafter referred to as autophagy). A growing body of evidence now suggests that autophagy is important for clearance of protein aggregates that form in cells as a consequence of ageing, oxidative stress, alterations that elevate the amounts of certain aggregation-prone proteins or expression of aggregating mutant variants of specific proteins. Autophagy is generally considered to be a non-specific, bulk degradation process. However, a recent study suggests that p62/SQSTM1 may link the recognition of polyubiquitinated protein aggregates to the autophagy machinery.1 This protein is able to polymerize via its N-terminal PB1 domain and to recognize polyubiquitin via its C-terminal UBA domain. It can also recruit the autophagosomal protein LC3 and co-localizes with many types of polyubiquitinated protein aggregates.1 Here we discuss possible implications of these findings and raise some questions for further investigation.  相似文献   
59.
Multiple system atrophy is a parkinsonian neurodegenerative disorder. It is cytopathologically characterized by accumulation of the protein p25α in cell bodies of oligodendrocytes followed by accumulation of aggregated α-synuclein in so-called glial cytoplasmic inclusions. p25α is a stimulator of α-synuclein aggregation, and coexpression of α-synuclein and p25α in the oligodendroglial OLN-t40-AS cell line causes α-synuclein aggregate-dependent toxicity. In this study, we investigated whether the FAS system is involved in α-synuclein aggregate dependent degeneration in oligodendrocytes and may play a role in multiple system atrophy. Using rat oligodendroglial OLN-t40-AS cells we demonstrate that the cytotoxicity caused by coexpressing α-synuclein and p25α relies on stimulation of the death domain receptor FAS and caspase-8 activation. Using primary oligodendrocytes derived from PLP-α-synuclein transgenic mice we demonstrate that they exist in a sensitized state expressing pro-apoptotic FAS receptor, which makes them sensitive to FAS ligand-mediated apoptosis. Immunoblot analysis shows an increase in FAS in brain extracts from multiple system atrophy cases. Immunohistochemical analysis demonstrated enhanced FAS expression in multiple system atrophy brains notably in oligodendrocytes harboring the earliest stages of glial cytoplasmic inclusion formation. Oligodendroglial FAS expression is an early hallmark of oligodendroglial pathology in multiple system atrophy that mechanistically may be coupled to α-synuclein dependent degeneration and thus represent a potential target for protective intervention.  相似文献   
60.
Fibroblast growth factor 21 is a novel hormonal regulator with the potential to treat a broad variety of metabolic abnormalities, such as type 2 diabetes, obesity, hepatic steatosis, and cardiovascular disease. Human recombinant wild type FGF21 (FGF21) has been shown to ameliorate metabolic disorders in rodents and non-human primates. However, development of FGF21 as a drug is challenging and requires re-engineering of its amino acid sequence to improve protein expression and formulation stability. Here we report the design and characterization of a novel FGF21 variant, LY2405319. To enable the development of a potential drug product with a once-daily dosing profile, in a preserved, multi-use formulation, an additional disulfide bond was introduced in FGF21 through Leu118Cys and Ala134Cys mutations. FGF21 was further optimized by deleting the four N-terminal amino acids, His-Pro-Ile-Pro (HPIP), which was subject to proteolytic cleavage. In addition, to eliminate an O-linked glycosylation site in yeast a Ser167Ala mutation was introduced, thus allowing large-scale, homogenous protein production in Pichia pastoris. Altogether re-engineering of FGF21 led to significant improvements in its biopharmaceutical properties. The impact of these changes was assessed in a panel of in vitro and in vivo assays, which confirmed that biological properties of LY2405319 were essentially identical to FGF21. Specifically, subcutaneous administration of LY2405319 in ob/ob and diet-induced obese (DIO) mice over 7–14 days resulted in a 25–50% lowering of plasma glucose coupled with a 10–30% reduction in body weight. Thus, LY2405319 exhibited all the biopharmaceutical and biological properties required for initiation of a clinical program designed to test the hypothesis that administration of exogenous FGF21 would result in effects on disease-related metabolic parameters in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号