首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   806篇
  免费   130篇
  2023年   7篇
  2022年   14篇
  2021年   49篇
  2020年   21篇
  2019年   26篇
  2018年   26篇
  2017年   20篇
  2016年   30篇
  2015年   48篇
  2014年   47篇
  2013年   40篇
  2012年   68篇
  2011年   48篇
  2010年   30篇
  2009年   22篇
  2008年   24篇
  2007年   26篇
  2006年   26篇
  2005年   24篇
  2004年   49篇
  2003年   37篇
  2002年   22篇
  2001年   9篇
  2000年   24篇
  1999年   24篇
  1998年   8篇
  1997年   10篇
  1996年   7篇
  1995年   5篇
  1994年   5篇
  1993年   7篇
  1992年   12篇
  1991年   7篇
  1990年   9篇
  1989年   12篇
  1988年   7篇
  1987年   7篇
  1986年   13篇
  1985年   9篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   8篇
  1975年   3篇
  1973年   3篇
  1972年   2篇
  1971年   4篇
  1970年   3篇
  1969年   3篇
  1967年   2篇
排序方式: 共有936条查询结果,搜索用时 46 毫秒
91.
The whole-cell phospholipid composition of the six known polymorphic species of Tetrahymena has been examined by [(3)H]acetate and [(3)H]myristic acid radiolabeling, and by gas-liquid chromatography of total phospholipid-bound fatty acids. Five of the polymorphic species contained similar phospholipid profiles following radiolabeling in that phosphatidylethanolamine (PE) was the predominant phospholipid; however, in cells of Tetrahymena patula LFF, aminoethylphosphonolipid was present in amounts nearly equal to PE. Tetrahymena patula LFF contained an unusually large percentage of sphingolipid (16.2% by [(3)H]acetate radiolabeling). Substantial differences were found in the fatty acid profiles of the polymorphic species, which included the degree of fatty acid unsaturation and relative weight percentages of odd-chain fatty acids. Tetrahymena vorax contained a low ratio of unsaturated C(18) fatty acids to saturated C(18) fatty acids as compared with all other species examined. The differentiating species generally contained a lesser percentage of monoenoic fatty acids and a lower ratio of unsaturated C(16) fatty acids to saturated C(16) fatty acids as compared with the two monomorphic species examined.  相似文献   
92.
Antibodies are critical reagents used in several biodetection platforms for the identification of biological agents. Recent advances in phage display technology allow isolation of high affinity recombinant antibody fragments (Fabs) that may bind unique epitopes of biological threat agents. The versatility of the selection process lends itself to efficient screening methodologies and can increase the number of antigen binding clones that can be isolated. Pilot scale biomanufacturing can then be used for the economical production of these immunoglobulin reagents in bacterial fermentation systems, and expression vectors with hexahistidine tags can be used to simplify downstream purification. One such Fab reagent directed against botulinum neurotoxin A/B has been shown to be sensitive in a variety of assay formats including surface plasmon resonance (SPR), flow cytometry, enzyme linked immunosorbent assay (ELISA), and hand-held immunochromatographic assay. Recombinant antibodies can provide another source of high quality detection reagents in our arsenal to identify or detect pathogens in environmental samples.  相似文献   
93.
94.
95.
The two Flag/MaSp 2 silk proteins produced recombinantly were based on the basic consensus repeat of the dragline silk spidroin 2 protein (MaSp 2) from the Nephila clavipes orb weaving spider. However, the proline-containing pentapeptides juxtaposed to the polyalanine segments resembled those found in the flagelliform silk protein (Flag) composing the web spiral: (GPGGX(1) GPGGX(2))(2) with X(1) /X(2) = A/A or Y/S. Fibers were formed from protein films in aqueous solutions or extruded from resolubilized protein dopes in organic conditions when the Flag motif was (GPGGX(1) GPGGX(2))(2) with X(1) /X(2) = Y/S or A/A, respectively. Post-fiber processing involved similar drawing ratios (2-2.5×) before or after water-treatment. Structural (ssNMR and XRD) and morphological (SEM) changes in the fibers were compared to the mechanical properties of the fibers at each step. Nuclear magnetic resonance indicated that the fraction of β-sheet nanocrystals in the polyalanine regions formed upon extrusion, increased during stretching, and was maximized after water-treatment. X-ray diffraction showed that nanocrystallite orientation parallel to the fiber axis increased the ultimate strength and initial stiffness of the fibers. Water furthered nanocrystal orientation and three-dimensional growth while plasticizing the amorphous regions, thus producing tougher fibers due to increased extensibility. These fibers were highly hygroscopic and had similar internal network organization, thus similar range of mechanical properties that depended on their diameters. The overall structure of the consensus repeat of the silk-like protein dictated the mechanical properties of the fibers while protein molecular weight limited these same properties. Subtle structural motif re-design impacted protein self-assembly mechanisms and requirements for fiber formation.  相似文献   
96.
The HtrA protease of Streptococcus pneumoniae functions both in a general stress response role and as an error sensor that specifically represses genetic competence when the overall level of biosynthetic errors in cellular proteins is low. However, the mechanism through which HtrA inhibits development of competence has been unknown. We found that HtrA digested the pneumococcal competence-stimulating peptide (CSP) and constituted the primary extracytoplasmic CSP-degrading activity in cultures of S. pneumoniae. Mass spectrometry demonstrated that cleavage predominantly followed residue Phe-8 of the CSP-1 isoform of the peptide within its central hydrophobic patch, and in competition assays, both CSP-1 and CSP-2 interacted with HtrA with similar efficiencies. More generally, analysis of β-casein digestion and of digestion within HtrA itself revealed a preference for substrates with non-polar residues at the P1 site. Consistent with a specificity for exposed hydrophobic residues, competition from native BSA only weakly inhibited digestion of CSP, but denaturation converted BSA into a strong competitive inhibitor of such proteolysis. Together these findings support a model in which digestion of CSP by HtrA is reduced in the presence of other unfolded proteins that serve as alternative targets for degradation. Such competition may provide a mechanism by which HtrA functions in a quality control capacity to monitor the frequency of biosynthetic errors that result in protein misfolding.  相似文献   
97.
In an effort to biochemically characterize metallo-β-lactamase NDM-1, we cloned, overexpressed, purified, and characterized several maltose binding protein (MBP)-NDM-1 fusion proteins with different N-termini (full-length, Δ6, Δ21, and Δ36). All MBP-NDM-1 fusion proteins were soluble; however, only one, MBP-NDM-1Δ36, exhibited high activity and bound 2 equiv of Zn(II). Thrombin cleavage of this fusion protein resulted in the truncated NDM-1Δ36 variant, which exhibited a k(cat) of 16 s(-1) and a K(m) of 1.1 μM when using nitrocefin as a substrate, bound 2 equiv of Zn(II), and was monomeric in solution. Extended X-ray absorption fine structure studies of the NDM-1Δ36 variant indicate the average metal binding site for Zn(II) in this variant consists of four N/O donors (two of which are histidines) and 0.5 sulfur donor per zinc, with a Zn-Zn distance of 3.38 ?. This metal binding site is very similar to those of other metallo-β-lactamases that belong to the B1 subclass. Pre-steady-state kinetic studies using nitrocefin and chromacef and the NDM-1Δ36 variant indicate that the enzyme utilizes a kinetic mechanism similar to that used by metallo-β-lactamases L1 and CcrA, in which a reactive nitrogen anion is stabilized and its protonation is rate-limiting. While they are very different in terms of amino acid sequence, these studies demonstrate that NDM-1 is structurally and mechanistically very similar to metallo-β-lactamase CcrA.  相似文献   
98.
Specification of the left-right axis during embryonic development is critical for the morphogenesis of asymmetric organs such as the heart, lungs, and stomach. The first known left-right asymmetry to occur in the mouse embryo is a leftward fluid flow in the node that is created by rotating cilia on the node surface. This flow is followed by asymmetric expression of Nodal and its inhibitor Cerl2 in the node. Defects in cilia and/or fluid flow in the node lead to defective Nodal and Cerl2 expression and therefore incorrect visceral organ situs. Here we show the cilia protein Arl13b is required for left right axis specification as its absence results in heterotaxia. We find the defect originates in the node where Cerl2 is not downregulated and asymmetric expression of Nodal is not maintained resulting in symmetric expression of both genes. Subsequently, Nodal expression is delayed in the lateral plate mesoderm (LPM). Symmetric Nodal and Cerl2 in the node could result from defects in either the generation and/ or the detection of Nodal flow, which would account for the subsequent defects in the LPM and organ positioning.  相似文献   
99.
Ly49G and H-2 class I D(k) molecules are critical to natural killer cell-mediated viral control. To examine their contributions in greater depth, we established NK gene complex (NKC)/Ly49 congenic strains and a novel genetic model defined by MHC class I D(k) disparity in congenic and transgenic mouse strains. Generation and maintenance of Ly49 and H-2 class I select strains require efficient and reproducible genotyping assays for highly polygenic and polymorphic sequences. Thus, we coupled gene- and allele-specific PCR with high-resolution melt (HRM) analysis to discriminate Ly49g and H-2 class I D and K alleles in select strains and in the F(2) and backcross hybrid offspring of different genetic crosses. We show that HRM typing for these critical immune response genes is fast, accurate, and dependable. We further demonstrate that H-2 class I D HRM typing is competent to detect and quantify transgene copy numbers in different mice with distinct genetic backgrounds. Our findings substantiate the utility and practicality of HRM genotyping for highly related genes and alleles, even those belonging to clustered multigene families. Based on these findings, we envision that HRM is capable to interrogate and quantify gene- and allele-specific variations due to differential regulation of gene expression.  相似文献   
100.
A number of recent studies have used pharmacological inhibitors to establish a role for protein kinase Mζ (PKMζ) in synaptic plasticity and memory. These studies use zeta inhibitory peptide (ZIP) and chelerythrine as inhibitors of PKMζ to block long term potentiation and memory; staurosporine is used as a negative control to show that a nonspecific kinase inhibitor does not block long term potentiation and memory. Here, we show that neither ZIP nor chelerythrine inhibits PKMζ in cultured cells or brain slices. In contrast, staurosporine does block PKMζ activity in cells and brain slices by inhibiting its upstream phosphoinositide-dependent kinase-1. These studies demonstrate that the effectiveness of drugs against purified PKMζ may not be indicative of their specificity in the more complex environment of the cell and suggest that PKMζ is unlikely to be the mediator of synaptic plasticity or memory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号