首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   49篇
  2022年   1篇
  2018年   1篇
  2017年   2篇
  2013年   6篇
  2012年   4篇
  2011年   6篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   2篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1980年   4篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1930年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
11.
Mesenchymal stem cells (MSCs) are not only able to evade the immune system, but they have also been demonstrated to exert profound immunosuppressive properties on T cell proliferation. However, their effect on the initiators of the immune response, the dendritic cells (DCs), are relatively unknown. In the present study, the effects of human MSCs on the differentiation and function of both CD34+ -derived DCs and monocyte-derived DCs were investigated. The presence of MSCs during differentiation blocked the differentiation of CD14+CD1a- precursors into dermal/interstitial DCs, without affecting the generation of CD1a+ Langerhans cells. In line with these observations, MSCs also completely prevented the generation of immature DCs from monocytes. The inhibitory effect of MSCs on DC differentiation was dose dependent and resulted in both phenotypical and functional modifications, as demonstrated by a reduced expression of costimulatory molecules and hampered capacity to stimulate naive T cell proliferation. The inhibitory effect of MSCs was mediated via soluble factors. Taken together, these data demonstrate that MSCs, next to the antiproliferative effect on T cells, have a profound inhibitory effect on the generation and function of both CD34+ -derived and monocyte-derived DCs, indicating that MSCs are able to modulate immune responses at multiple levels.  相似文献   
12.
Recently we found that 1-methyldodecanoylindole-2-carboxylic acid (1) and 1-[2-(4-carboxyphenoxy)ethyl]-3-dodecanoylindole-2-carboxylic acid (4) were inhibitors of the cytosolic phospholipase A2α (cPLA2α)-mediated arachidonic acid release in calcium ionophore A23187-stimulated human platelets with IC50-values of 4.8 μM (1) and 0.86 μM (4). We have now replaced the 3-acyl residue of these compounds by alkylated sulfinyl-, sulfony-, sulfinamoyl-, sulfamoyl-, carbonylamino-, or carbonylaminomethyl-substituents. Structure–activity relationship studies revealed that the pronounced cellular activity of 4 strongly depends on the presence of the 3-acyl moiety. Surprisingly, when testing 4 and its derivatives in an assay with the isolated cPLA2, none of these compounds showed an inhibitory potency at 10 μM indicating that they do not inhibit cPLA2α in the cells by a direct interaction with the active site of the enzyme.  相似文献   
13.
A series of 3-pyrrol-3-yl-3H-isobenzofuran-1-ones was synthesized and assessed for the ability to inhibit cytosolic phospholipase A(2)alpha (cPLA(2)alpha). Several of these compounds were found to be active in both a cell based assay and an isolated enzyme assay. The most potent inhibitor was the thiazolidine-2,4-dione substituted derivative 35. With IC(50)-values of 0.7 muM and 7.3 muM in the cellular and isolated enzyme assay, respectively, it possesses similar inhibitory potency as the known cPLA(2)alpha inhibitor arachidonyltrifluoromethyl ketone (AACOCF(3)). Structure-activity relationship studies revealed that the evaluated isobenzofuran-1-ones seem to exert their cellular activities not only by a direct interaction with the enzyme but also by other as yet unknown mechanisms.  相似文献   
14.
Accumulating evidence indicates that oxidative modification of low-density lipoproteins is atherogenic and that antioxidants may play a role in protection of LDL against oxidation. Several studies have reported a seasonal fluctuation in antioxidant levels, but to date nothing is known about seasonal fluctuations in parameters of oxidizability. We collected blood from 10 volunteers at four different periods over one year (February, May, September and December), and measured the amount of plasma lip ids, plasma antioxidants, lipid and fatty acid composition of the LDL particle, LDL antioxidant content, LDL particle size and oxidation parameters (lag time and propagation rate). No seasonal fluctuation for lag time and propagation rate of copper ion-induced LDL oxidation was found. Small seasonal fluctuations were observed for some determinants of LDL oxidation, e.g. plasma and LDL vitamin E and LDL particle size, and for plasma lipids, plasma and LDL lutein and LDL p-carotene. Fatty acid composition of LDL did not change during the year. The main determinant of oxidation susceptibility was the fatty acid composition of LDL. We conclude that LDL oxidation parameters do not change over the year.  相似文献   
15.
We previously demonstrated that the endoplasmic reticulum (ER) chaperone BiP functions in human cytomegalovirus (HCMV) assembly and egress. Here, we show that BiP localizes in two cytoplasmic structures in infected cells. Antibodies to the extreme C terminus, which includes BiP''s KDEL ER localization sequence, detect BiP in regions of condensed ER near the periphery of the cell. Antibodies to the full length, N terminus, or larger portion of the C terminus detect BiP in the assembly compartment. This inability of C-terminal antibodies to detect BiP in the assembly compartment suggests that BiP''s KDEL sequence is occluded in the assembly compartment. Depletion of BiP causes the condensed ER and assembly compartments to dissociate, indicating that BiP is important for their integrity. BiP and pp28 are in association in the assembly compartment, since antibodies that detect BiP in the assembly compartment coimmunoprecipitate pp28 and vice versa. In addition, BiP and pp28 copurify with other assembly compartment components on sucrose gradients. BiP also coimmunoprecipitates TRS1. Previous data show that cells infected with a TRS1-deficient virus have cytoplasmic and assembly compartment defects like those seen when BiP is depleted. We show that a fraction of TRS1 purifies with the assembly compartment. These findings suggest that BiP and TRS1 share a function in assembly compartment maintenance. In summary, BiP is diverted from the ER to associate with pp28 and TRS1, contributing to the integrity and function of the assembly compartment.Human cytomegalovirus (HCMV), the largest of the human herpesviruses, is capable of encoding over 200 proteins, which are expressed in temporal fashion as immediate-early, early, delayed-early, and late genes. Despite the extensive coding capacity of HCMV, its replication cycle is slow. During this protracted period, the virus must maintain optimal replication conditions in the host cell. However, the increasing strain of the infection induces cellular stress responses with consequences that may be deleterious to the progress of the infection. We and others have previously shown that HCMV has multiple mechanisms to deal with the deleterious aspects of cellular stress responses while maintaining beneficial ones (2, 8-10, 14, 17, 18, 22-24, 26, 27, 50, 51).An example of these mechanisms is the viral control of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Due to the number of HCMV proteins that are glycosylated, or receive other ER-dependent posttranslational modifications, the load of proteins in the ER can exceed its capacity, resulting in ER stress and the activation of the UPR (18, 47, 51). However, we and others have shown that HCMV controls and modulates the UPR, maintaining aspects that may benefit the viral infection while inhibiting aspects that would be detrimental (18, 51).The UPR is normally controlled by transmembrane sensors which initiate the complex UPR signaling cascade when activated by ER stress (reviewed in references 20, 35, 38, and 52). The ER molecular chaperone BiP (immunoglobulin heavy chain-binding protein), also called glucose-regulated protein 78 (GRP78), is believed to bind these sensors and keep them inactive during unstressed conditions. However, when unfolded or misfolded proteins accumulate in the ER, BiP leaves these sensors to perform its chaperone function, thus allowing the sensors to activate UPR signaling. We have previously shown that during HCMV infection, BiP is vastly overproduced (8), suggesting that BiP may have other functions in the viral infection. Indeed, it has been shown that BiP binds to the viral proteins US2 and US11; this interaction is necessary for the virus-mediated degradation of major histocompatibility complex class I and II (15, 47). Further, we have shown that depletion of BiP, using either the BiP-specific subtilase cytotoxin SubAB (32) or short hairpin RNAs, caused infectious virion formation in the cytoplasm to cease and nucleocapsids to accumulate just outside the outer nuclear membrane (8). This result suggested that BiP has a significant role in virion formation and cytoplasmic egress.Although the exact mechanism of virion formation in the cytoplasm is not well understood, studies have identified a perinuclear structure, referred to as the cytoplasmic assembly compartment, that is involved in the process. Several viral proteins, for example, tegument proteins (pp28, pp65) (36) and viral glycoproteins (gB, gH, gL, gO, gp65) (36, 46), have been identified as part of this structure. Defining the exact origin of this compartment has been complicated by the observation of specific organellar markers in and around the compartment, while other markers of the same organelles are not detected. For example, immunofluorescence examination suggests that the early endosomal marker early endosome antigen 1 (EEA1) has been observed in the center of the assembly compartment (12, 13); however, Rab4 and Rab5, other early endosomal markers, were not detected (16). Such observations suggest that the virus directs specific viral and cellular proteins to the assembly compartment as needed for assembly compartment function.In the present study, we further examine the role of BiP during an HCMV infection, including its localization and interactions with other proteins. We show here that in infected cells, BiP localizes in two distinct structures, regions of condensed ER near the periphery of the cell and the assembly compartment. The data suggest that BiP diversion from the ER to the assembly compartment is due to occlusion of its ER localization signal. Depletion of BiP causes both condensed ER and assembly compartments to disperse, indicating that BiP is important for their formation or maintenance. BiP and pp28 appear to associate in the assembly compartment, since BiP from the assembly compartment coimmunoprecipitates pp28 and vice versa. In addition, both BiP and pp28 copurify with the assembly compartment on sucrose gradients. BiP also coimmunoprecipitates TRS1. Previous studies (1, 4) have shown that cells infected with HCMV with a mutation in the TRS1 gene show cytoplasmic and assembly compartment defects like those seen when BiP is depleted (reference 8 and the studies presented below). We show that a fraction of TRS1 purifies with the assembly compartment, indicating a shared assembly compartment function with BiP. In summary, our data suggest that BiP is diverted from the ER to associate with pp28 and TRS1, contributing to the integrity and function of the assembly compartment.  相似文献   
16.
Association of polyadenylation cleavage factor I with U1 snRNP   总被引:2,自引:0,他引:2       下载免费PDF全文
Splicing and polyadenylation factors interact for the control of polyadenylation and the coupling of splicing and polyadenylation. We document an interaction between the U1 snRNP and mammalian polyadenylation cleavage factor I (CF Im), one of several polyadenylation factors needed for the cleavage of the pre-mRNA at the polyadenylation site. Sucrose density gradient centrifugation demonstrated that CF Im separated into two fractions, a light fraction which contained the known CF Im subunits (72, 68, 59, and 25 kD), and a heavy fraction, rich in snRNPs, which contained predominately the 68- and 25-kD CF Im subunits. Using specific antibodies we found that the heavy fraction contains U1 snRNP/CF Im coprecipitable complexes. These complexes were insensitive to RNase treatment, suggesting that the coprecipitation is not due to RNA tethering. In vitro binding experiments show that both the 68- and 25-kD subunits bind to and comigrate with U1 snRNP. In addition, the 25-kD CF Im subunit binds specifically to the 70K protein of U1 snRNP (U1 70K). This binding may account for the CF Im/U1 snRNP interaction. During these studies we found that mAb 2.73 (mAb 2.73), an established U1 70K antibody, efficiently precipitates the bulk of the CF Im from cellular extracts. Because mAb 2.73 has been used in a number of previous studies related to the U1 snRNP and the U1 70K protein, the precipitation of CF Im must be considered in evaluating past and future data based on the use of mAb 2.73.  相似文献   
17.
18.
19.
Cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are enzymes, which have emerged as attractive targets for the development of analgetic and anti-inflammatory drugs. We recently reported that 1-[3-(4-octylphenoxy)-2-oxopropyl]indole-5-carboxylic acid (10) and related compounds are inhibitors of cPLA2α. Since cPLA2α and FAAH possess several common structural features, we now screened this substance series together with some new derivatives for FAAH inhibition. Some of the assayed compounds proved to be selective cPLA2α inhibitors, while others showed high FAAH and moderate cPLA2α inhibitory potency. Furthermore, several derivatives were favorably active against both enzymes and, therefore, could represent agents, which have improved analgetic and anti-inflammatory qualities in comparison with selective cPLA2α and FAAH inhibitors.  相似文献   
20.
The 86-kDa major immediate-early protein (IE2/IEP86) of human cytomegalovirus (HCMV) contains a serine-rich region (amino acids 258 to 275) with several consensus casein kinase II (CKII) sites. We performed extensive mutational analysis of this region, changing serines to alternating alanines and glycines. Mutation of the serines between amino acids 266 and 275 eliminated in vitro phosphorylation by CKII. In vitro CKII phosphorylation of the serines between amino acids 266 and 269 or between amino acids 271 and 275 inhibited the ability of IE2/IEP86 to bind to TATA-binding protein. Correspondingly, nonphosphorylatable mutants in these regions showed increased activation of specific HCMV gene promoters in transfection studies. Viruses containing mutations of the serines throughout the entire region (amino acids 258 to 275) or the second half (amino acids 266 to 275) of the region showed delayed expression of all viral proteins tested and, correspondingly, delayed growth compared to wild-type HCMV. Mutation of the serines in the first half of the serine-rich region (amino acids 258 to 264) or between amino acids 266 and 269 propagated very slowly and has not been further studied. In contrast, mutation of the serines between amino acids 271 and 275 resulted in accelerated virus growth and accelerated temporal expression of viral proteins. These results suggest that the serine-rich region is structurally complex, possibly affecting multiple functions of IE2/IEP86. The data show that the phosphorylation state of the serine-rich region, particularly between amino acids 271 and 275, modulates the temporal expression of viral genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号