首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   809篇
  免费   71篇
  880篇
  2022年   5篇
  2021年   14篇
  2020年   10篇
  2019年   11篇
  2018年   14篇
  2017年   5篇
  2016年   12篇
  2015年   33篇
  2014年   24篇
  2013年   31篇
  2012年   44篇
  2011年   36篇
  2010年   32篇
  2009年   16篇
  2008年   45篇
  2007年   42篇
  2006年   44篇
  2005年   34篇
  2004年   37篇
  2003年   38篇
  2002年   36篇
  2001年   7篇
  1999年   6篇
  1998年   11篇
  1996年   5篇
  1995年   7篇
  1994年   7篇
  1993年   5篇
  1990年   8篇
  1988年   7篇
  1985年   10篇
  1984年   11篇
  1983年   8篇
  1982年   13篇
  1981年   10篇
  1980年   12篇
  1979年   19篇
  1978年   9篇
  1977年   11篇
  1976年   9篇
  1975年   5篇
  1974年   5篇
  1973年   5篇
  1971年   5篇
  1970年   11篇
  1969年   10篇
  1968年   7篇
  1967年   6篇
  1963年   7篇
  1957年   4篇
排序方式: 共有880条查询结果,搜索用时 15 毫秒
101.
Mutations in the gene of human RNase T2 are associated with white matter disease of the human brain. Although brain abnormalities (bilateral temporal lobe cysts and multifocal white matter lesions) and clinical symptoms (psychomotor impairments, spasticity and epilepsy) are well characterized, the pathomechanism of RNase T2 deficiency remains unclear. RNase T2 is the only member of the Rh/T2/S family of acidic hydrolases in humans. In recent years, new functions such as tumor suppressing properties of RNase T2 have been reported that are independent of its catalytic activity. We determined the X-ray structure of human RNase T2 at 1.6 Å resolution. The α+β core fold shows high similarity to those of known T2 RNase structures from plants, while, in contrast, the external loop regions show distinct structural differences. The catalytic features of RNase T2 in presence of bivalent cations were analyzed and the structural consequences of known clinical mutations were investigated. Our data provide further insight into the function of human RNase T2 and may prove useful in understanding its mode of action independent of its enzymatic activity.  相似文献   
102.
103.
Recently, there has been renewed interest in the role of reactive oxygen species (ROS), especially H(2)O(2), in wound healing. We previously showed that H(2)O(2) stimulates healing in a keratinocyte scratch wound model. In this paper, we used a more complex and physiologically relevant model that involves co-culturing primary keratinocytes and fibroblasts. We found that the two main cell types within the skin have different sensitivities to H(2)O(2) and to the widely used "antioxidant"N-acetyl-l-cysteine (NAC). Keratinocytes were very resistant to the toxicity of H(2)O(2) (250 and 500 μM) or NAC (5 mM). However, the viability of fibroblasts was decreased by both compounds. Using the co-culture model, we also found that H(2)O(2) increases re-epithelialization while NAC retards it. Our data further illustrate the possible role of ROS in wound healing and the co-culture model should be useful for screening agents that may influence the wound healing process.  相似文献   
104.
Although HCO3 is known to be required for early embryo development, its exact role remains elusive. Here we report that HCO3 acts as an environmental cue in regulating miR-125b expression through CFTR-mediated influx during preimplantation embryo development. The results show that the effect of HCO3 on preimplantation embryo development can be suppressed by interfering the function of a HCO3-conducting channel, CFTR, by a specific inhibitor or gene knockout. Removal of extracellular HCO3 or inhibition of CFTR reduces miR-125b expression in 2 cell-stage mouse embryos. Knockdown of miR-125b mimics the effect of HCO3 removal and CFTR inhibition, while injection of miR-125b precursor reverses it. Downregulation of miR-125b upregulates p53 cascade in both human and mouse embryos. The activation of miR-125b is shown to be mediated by sAC/PKA-dependent nuclear shuttling of NF-κB. These results have revealed a critical role of CFTR in signal transduction linking the environmental HCO3 to activation of miR-125b during preimplantation embryo development and indicated the importance of ion channels in regulation of miRNAs.  相似文献   
105.
A major issue faced by breeders is how to effectively manage adverse correlations in breeding programs. We present results of a Monte Carlo allele-based simulation of the changes in response and variance of response under adverse genetic correlations by using the examples of two contrasting selection methods: the ‘Smith-Hazel’ selection index (SH) and independent culling (IC). We assumed several gene models, which included linkage and antagonistic pleiotropy as the primary drivers of adverse genetic correlations. The different behaviors of these selection methods allowed us to identify the mechanism behind the generation of uncertainty under antagonistic trait selection: IC had the properties of stabilizing selection, while SH behaved more similar to disruptive selection. Although SH outperformed IC in terms of genetic gain, this advantage happened at the cost of higher variance of response and loss of heterozygosity. Using an optimum selection algorithm (OS) to prevent the loss of heterozygosity through a constraint on inbreeding in SH/OS increased marginally the reliability, remaining still below that of IC under equal conditions. However, SH/OS had lower inbreeding (ΔF) than IC for equivalent levels of genetic gain, so a compromise between high selection reliability, low ΔF, and gain must be made by a breeder under antagonistic trait selection even with the use of optimization tools.  相似文献   
106.
Sublines are used in the third-generation breeding and testing of coastal Douglas-fir in British Columbia, with the original intent of selecting only one genotype per subline for production populations (e.g., seed orchards) to eliminate relatedness among parents (therein called “1/SL”). We evaluated three additional selection scenarios that did not consider the subline structure. One of the scenarios strictly selected on the basis of the highest breeding values of the trees (“TOP”); another scenario used the TOP selections, but assigned the number of ramets per selection proportionally to the selection breeding value (“LIND”); lastly, a simulated annealing technique was applied to maximize gain under explicit constraints on coancestry (“OPTS”). All three alternative selection scenarios resulted in some relatedness and coancestry among selections, but the last two provided increases in average breeding values compared to those obtained by the 1/SL scenario. Effective population sizes (and consequently inbreeding coefficients) varied among the three selection scenarios. Effects of the various selections on merchantable volume at rotation age were determined using a linear regression model based on an individual tree model (TASS), which was first run to determine the relationship between merchantable volume and inbreeding (f). LIND and TOP selections yielded the highest breeding values but, due to the increased coancestry among selections, paid a penalty in the merchantable volume determination. OPTS maximized merchantable volume at rotation age 60 after including more than 13 selections with an increase of around 3% over that obtained by the 1/SL selection scenario, with an associated increase in Ne of 50%. Other implications of the three alternative selection scenarios are discussed.  相似文献   
107.
108.
Metal complexation reactions can be used effectively as sensors to measure concentrations of phosphate and phosphate analogs. Recently, a method was described for the detection of phosphate or ATP in aqueous solution based on the displacement by these ligands of pyrocatechol violet (PV) from a putative 2:1 (Yb3+)2PV complex. We have not been able to reproduce this stoichiometry and report this work in order to correct the coordination chemistry upon which sensor applications are based. In our work, colorimetric and spectrophotometric detection of phosphate was confirmed qualitatively (blue PV + Yb3+; yellow + Pi); however, the sequence of visual changes on the titration of PV with 2 equiv. of Yb3+ and back titration with ATP as described previously could not be reproduced. In contrast to the linear response to Pi that was reported previously, the absorbance response at 443 or 623 nm was found to be sigmoidal using the recommended 2:1 Yb3+:PV solution (100 μM:50 μM, pH 7, HEPES). Furthermore, both continuous variation titration and molar ratio analysis (Job plot) experiments are consistent with 1:1, not 2:1, YbPV complex stoichiometry at pH 7 in HEPES buffer, indicating that the deviation from linearity is produced by excess Yb3+. Indeed, using a 1:1 Yb3+:PV ratio produces a linear response in ΔAbs at 443 or 623 nm on back titration with analyte (phosphate or ATP). In addition, speciation analysis of the Yb–ATP system demonstrates that a 1:1 complex containing Yb3+ and ATP predominates in solution at μM metal ion and ATP concentrations. Paramagnetic 1H NMR spectroscopy directly establishes the formation of Yb3+–solute complexes in dilute aqueous solution. The 1:1 YbPV complex can be used for the colorimetric measurement of phosphate and ATP concentrations from ~2 μM. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Charles E. McKenna (Corresponding author)Email:
  相似文献   
109.
Highly toxic beryllium(II) is divalent metal ion with a high charge density, making it a potential target for binding to bio-molecules rich in O donor groups. In aqueous solution Be2+ binds to ATP and ADP to form 1:1 Be2+:ATP and Be2+:ADP complexes in relatively acidic media. At neutral pH the complex formed undergoes hydrolysis. Be2+ binding to ATP and ADP is much stronger than Ca2+ and Mg2+ binding. The high affinity of Be2+ toward ATP and ADP binding suggests a mechanism relevant to understanding the in vivo chemical toxicity of this metal.  相似文献   
110.
Oligonucleotides containing modified bases are commonly used for biochemical and biophysical studies to assess the impact of specific types of chemical damage on DNA structure and function. In contrast to the synthesis of oligonucleotides with normal DNA bases, oligonucleotide synthesis with modified bases often requires modified synthetic or deprotection conditions. Furthermore, several modified bases of biological interest are prone to further damage during synthesis and oligonucleotide isolation. In this article, we describe the application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to the characterization of a series of modified synthetic oligonucleotides. The potential for and limits in obtaining high mass accuracy for confirming oligonucleotide composition are discussed. Examination of the isotope cluster is also proposed as a method for confirming oligonucleotide elemental composition. MALDI-TOF-MS analysis of the unpurified reaction mixture can be used to confirm synthetic sequence and to reveal potential problems during synthesis. Analysis during and after purification can yield important information on depurination and base oxidation. It can also reveal unexpected problems that can occur with nonstandard synthesis, deprotection, or purification strategies. Proper characterization of modified oligonucleotides is essential for the correct interpretation of experiments performed with these substrates, and MALDI-TOF-MS analysis provides a simple yet extensive method of characterization that can be used at multiple stages of oligonucleotide production and use.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号