首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   13篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   4篇
  2013年   10篇
  2012年   4篇
  2011年   7篇
  2010年   18篇
  2009年   6篇
  2008年   6篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   6篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
  1974年   4篇
  1973年   1篇
  1971年   1篇
排序方式: 共有152条查询结果,搜索用时 31 毫秒
21.
In studying plant colonization by inoculated Fusarium oxysporum endophytes, it is important to be able to distinguish inoculated isolates from saprophytic strains. In the current study, F. oxysporum isolates were transformed with the green (GFP) and red fluorescent protein (DsRed) genes, and benomyl- and chlorate-resistant mutant isolates were also developed. The benomyl- and chlorate-resistant mutants, and the fluorescently labelled transformants, were able to grow on potato dextrose agar amended with 20 mg Benlate® l?1, 30 g chlorate l?1 and 150 μg hygromycin ml?1, respectively. Single spores of all mutants remained stable after several transfers on non-selective media. Most mutants and transformants produced colony diameters that did not differ significantly from that of their wild-type progenitors after 7 days of growth on non-selective media. Few mutants, however, had growth rates that were either slower or faster than for their wild-types. Plant colonization studies showed that root and rhizome tissue colonization by most benomyl- and chlorate-resistant mutants was similar to that of their wild-type isolates. Unlike GFP transformants, DsRed transformants were difficult to visualize in planta. Both the mutants and transformants can be used for future studies to investigate colonization, distribution and survival of biocontrol F. oxysporum endophytes in banana plants.  相似文献   
22.
The burrowing nematode Radopholus similis is one of the major constraints to banana (Musa spp.) production worldwide. Resource-poor farmers can potentially manage R. similis by using naturally occurring banana endophytes, such as nonpathogenic Fusarium oxysporum, that are inoculated into tissue culture banana plantlets. At present, it is unclear at what stage in the R. similis infection process the endophytes are most effective. In this study, the effect of three endophytic F. oxysporum isolates (V5w2, Eny1.31i and Eny7.11o) on R. similis host preference of either endophyte-treated or untreated banana plants was investigated. No differences were observed between the proportion of nematodes attracted to either root segments excised from endophyte-treated or untreated plants, or in experiments using endophyte-treated and untreated tissue culture banana plantlets. These results imply that the early processes of banana plant host recognition by R. similis are not affected by endophyte infection.  相似文献   
23.
In the experiments reported in this paper, we characterised the physiological and biochemical factors involved in the chilling-induced inhibition of photosynthetic carbon metabolism in soybean [Glycine max (L.) Merr.] genotypes of temperate and tropical adaptation. Plants of Maple Arrow (temperate genotype) and Java 29 (tropical genotype) were exposed to a single night at 8 degrees C. Dark chilling resulted in the inhibition of diurnal CO2 assimilation rate and decreased stomatal conductance in both genotypes. Further analysis, however, revealed a difference in the response of the two genotypes. Stomatal limitation was largely responsible for the inhibition of CO2 assimilation in Maple Arrow, whereas mesophyll limitation dominated the inhibition in Java 29. The results indicate that inhibition of stromal fructose-1,6-bisphosphatase (sFBPase; EC 3.1.3.11) activity and impaired electron transport capacity were responsible for the decrease in ribulose-1,5-bisphosphate (RuBP) regeneration capacity in Java 29. Sucrose-phosphate synthase (SPS; EC 2.4.1.14) activity was progressively inhibited during the light period in this genotype and might impose an additional constraint on photosynthesis. Maple Arrow appears to possess, at least with respect to photosynthetic carbon metabolism, physiological and biochemical characteristics that contribute towards its superior dark chilling tolerance.  相似文献   
24.
Despite intense research, PE_PGRS proteins still represent an intriguing aspect of mycobacterial pathogenesis. These cell surface proteins influence virulence in several pathogenic species, but their diverse and exact functions remain unclear. Herein, we focussed on a PE_PGRS member from Mycobacterium marinum, MMAR_0242, characterized by an extended and unique C‐terminal domain. We demonstrate that an M. marinum mutant carrying a transposon insertion in MMAR_0242 is highly impaired in its ability to replicate in macrophages and amoebae, because of its inability to inhibit lysosomal fusion. As a consequence, this mutant failed to survive intracellularly as evidenced by a reduced number of cytosolic actin tail‐forming bacteria and by quantitative electron microscopy, which mainly localized MMAR_0242::Tn within membrane‐defined vacuoles. Functional complementation studies indicated that the C‐terminus, but not the N‐terminal PE_PGRS domain, is required for intracellular growth/survival. In line with these findings, disruption of MMAR_0242 resulted in a highly attenuated virulence phenotype in zebrafish embryos, characterized by restricted bacterial loads and a failure to produce granulomas. Furthermore, expression of MMAR_0242 in Mycobacterium smegmatis, a non‐pathogenic species naturally deficient in PE_PGRS production, resulted in increased survival in amoebae with enhanced cytotoxic cell death and increased survival in infected mice with splenomegaly. Overall, these results indicate that MMAR_0242 is required for full virulence of M. marinum and sufficient to confer pathogenic properties to M. smegmatis.  相似文献   
25.
Inhibition of protein synthesis stabilizes a number of mRNAs, but little is known about the mechanism. To understand the relationship between protein synthesis and mRNA stability, we studied the degradation of calcitonin-induced urokinase-type plasminogen activator (uPA) mRNA in LLC-PK cells. uPA mRNA became highly stable by pretreatment with either cycloheximide or pactamycin, and the stabilizing effect of cycloheximide treatment was time dependent with the full effect exerted by 60 min. Stabilization was also observed with histone H4 mRNA but only partially with c-myc mRNA. To further analyze, we developed a cell-free decay reaction system based on post-mitochondrial supernatant (PMS). In this system, uPA mRNA was completely stable when fractions were obtained from cells pretreated with cycloheximide, but very unstable in control fractions, paralleling uPA mRNA stability in intact cells. However, in contrast to uPA mRNA and the in vivo observation, histone H4 mRNA was unstable whether or not the cells were pretreated with cycloheximide. These results suggest that inhibition of protein synthesis stabilizes mRNAs in at least two different ways in LLC-PK1 cells. When PMS from cycloheximide/calcitonin-treated cells was mixed with PMS from untreated cells, uPA mRNA was not destabilized. This suggests that a putative labile factor responsible for uPA mRNA degradation is not a soluble protein.  相似文献   
26.
27.
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号