首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   28篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   3篇
  2014年   8篇
  2013年   6篇
  2012年   7篇
  2011年   7篇
  2010年   2篇
  2009年   6篇
  2008年   8篇
  2007年   7篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   6篇
  1999年   8篇
  1998年   10篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   6篇
  1992年   6篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
  1954年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
81.
Membrane traffic in polarized epithelial cells   总被引:24,自引:0,他引:24  
Epithelial cells contain apical and basolateral surfaces with distinct compositions. Sorting of certain proteins to the basolateral surface involves the epithelial-specific mu 1b clathrin adaptor subunit. Recent results have shown that targeting to the basolateral surface utilizes the exocyst, whereas traffic to the apical surface uses syntaxin 3. Endocytosis at the apical surface is regulated by ARF6. Transcytosis of IgA is regulated by the p62Yes tyrosine kinase.  相似文献   
82.
Bacterial infection a leading cause of death among patients with stroke, with elderly patients often presenting with more debilitating outcomes. The findings from our retrospective study, supported by previous clinical reports, showed that increasing age is an early predictor for developing fatal infectious complications after stroke. However, exactly how and why older individuals are more susceptible to infection after stroke remains unclear. Using a mouse model of transient ischaemic stroke, we demonstrate that older mice (>12 months) present with greater spontaneous bacterial lung infections compared to their younger counterparts (7–10 weeks) after stroke. Importantly, we provide evidence that older poststroke mice exhibited elevated intestinal inflammation and disruption in gut barriers critical in maintaining colonic integrity following stroke, including reduced expression of mucin and tight junction proteins. In addition, our data support the notion that the localized pro‐inflammatory microenvironment driven by increased tumour necrosis factor‐α production in the colon of older mice facilitates the translocation and dissemination of orally inoculated bacteria to the lung following stroke onset. Therefore, findings of this study demonstrate that exacerbated dysfunction of the intestinal barrier in advanced age promotes translocation of gut‐derived bacteria and contributes to the increased risk to poststroke bacterial infection.  相似文献   
83.
There is little research investigating relationships between the Functional Movement Screen (FMS) and athletic performance in female athletes. This study analyzed the relationships between FMS (deep squat; hurdle step [HS]; in-line lunge [ILL]; shoulder mobility; active straight-leg raise [ASLR]; trunk stability push-up; rotary stability) scores, and performance tests (bilateral and unilateral sit-and-reach [flexibility]; 20-m sprint [linear speed]; 505 with turns from each leg; modified T-test with movement to left and right [change-of-direction speed]; bilateral and unilateral vertical and standing broad jumps; lateral jumps [leg power]). Nine healthy female recreational team sport athletes (age = 22.67 ± 5.12 years; height = 1.66 ± 0.05 m; body mass = 64.22 ± 4.44 kilograms) were screened in the FMS and completed the afore-mentioned tests. Percentage between-leg differences in unilateral sit-and-reach, 505 turns and the jumps, and difference between the T-test conditions, were also calculated. Spearman''s correlations (p ≤ 0.05) examined relationships between the FMS and performance tests. Stepwise multiple regressions (p ≤ 0.05) were conducted for the performance tests to determine FMS predictors. Unilateral sit-and-reach positive correlated with the left-leg ASLR (r = 0.704-0.725). However, higher-scoring HS, ILL, and ASLR related to poorer 505 and T-test performance (r = 0.722-0.829). A higher-scored left-leg ASLR related to a poorer unilateral vertical and standing broad jump, which were the only significant relationships for jump performance. Predictive data tended to confirm the correlations. The results suggest limitations in using the FMS to identify movement deficiencies that could negatively impact athletic performance in female team sport athletes.  相似文献   
84.
The Homeric epics are among the greatest masterpieces of literature, but when they were produced is not known with certainty. Here we apply evolutionary‐linguistic phylogenetic statistical methods to differences in Homeric, Modern Greek and ancient Hittite vocabulary items to estimate a date of approximately 710–760 BCE for these great works. Our analysis compared a common set of vocabulary items among the three pairs of languages, recording for each item whether the words in the two languages were cognate – derived from a shared ancestral word – or not. We then used a likelihood‐based Markov chain Monte Carlo procedure to estimate the most probable times in years separating these languages given the percentage of words they shared, combined with knowledge of the rates at which different words change. Our date for the epics is in close agreement with historians' and classicists' beliefs derived from historical and archaeological sources.  相似文献   
85.
Most chemoattractants rely on activation of the heterotrimeric G-protein Gαi to regulate directional cell migration, but few links from Gαi to chemotactic effectors are known. Through affinity chromatography using primary neutrophil lysate, we identify Homer3 as a novel Gαi2-binding protein. RNA interference–mediated knockdown of Homer3 in neutrophil-like HL-60 cells impairs chemotaxis and the establishment of polarity of phosphatidylinositol 3,4,5-triphosphate (PIP3) and the actin cytoskeleton, as well as the persistence of the WAVE2 complex. Most previously characterized proteins that are required for cell polarity are needed for actin assembly or activation of core chemotactic effectors such as the Rac GTPase. In contrast, Homer3-knockdown cells show normal magnitude and kinetics of chemoattractant-induced activation of phosphoinositide 3-kinase and Rac effectors. Chemoattractant-stimulated Homer3-knockdown cells also exhibit a normal initial magnitude of actin polymerization but fail to polarize actin assembly and intracellular PIP3 and are defective in the initiation of cell polarity and motility. Our data suggest that Homer3 acts as a scaffold that spatially organizes actin assembly to support neutrophil polarity and motility downstream of GPCR activation.  相似文献   
86.
Network crosstalk dynamically changes during neutrophil polarization   总被引:1,自引:0,他引:1  
Ku CJ  Wang Y  Weiner OD  Altschuler SJ  Wu LF 《Cell》2012,149(5):1073-1083
How complex signaling networks shape highly coordinated, multistep cellular responses is poorly understood. Here, we made use of a network-perturbation approach to investigate causal influences, or "crosstalk," among signaling modules involved in the cytoskeletal response of neutrophils to chemoattractant. We quantified the intensity and polarity of cytoskeletal marker proteins over time to characterize stereotyped cellular responses. Analyzing the effects of network disruptions revealed that, not only does crosstalk evolve rapidly during polarization, but also that intensity and polarity responses are influenced by different patterns of crosstalk. Interestingly, persistent crosstalk is arranged in a surprisingly simple circuit: a linear cascade from front to back to microtubules influences intensities, and a feed-forward network in the reverse direction influences polarity. Our approach provided a rational strategy for decomposing a complex, dynamically evolving signaling system and revealed evolving paths of causal influence that shape the neutrophil polarization response.  相似文献   
87.

Background

Legionnaires’ disease is a severe form of pneumonia caused by the environmental bacterium Legionella pneumophila. Outbreaks commonly affect people with known risk factors, but the genetic and pathogenic complexity of L. pneumophila within an outbreak is not well understood. Here, we investigate the etiology of the major Legionnaires’ disease outbreak that occurred in Edinburgh, UK, in 2012, by examining the evolutionary history, genome content, and virulence of L. pneumophila clinical isolates.

Results

Our high resolution genomic approach reveals that the outbreak was caused by multiple genetic subtypes of L. pneumophila, the majority of which had diversified from a single progenitor through mutation, recombination, and horizontal gene transfer within an environmental reservoir prior to release. In addition, we discover that some patients were infected with multiple L. pneumophila subtypes, a finding which can affect the certainty of source attribution. Importantly, variation in the complement of type IV secretion systems encoded by different genetic subtypes correlates with virulence in a Galleria mellonella model of infection, revealing variation in pathogenic potential among the outbreak source population of L. pneumophila.

Conclusions

Taken together, our study indicates previously cryptic levels of pathogen heterogeneity within a Legionnaires’ disease outbreak, a discovery that impacts on source attribution for future outbreak investigations. Furthermore, our data suggest that in addition to host immune status, pathogen diversity may be an important influence on the clinical outcome of individual outbreak infections.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0504-1) contains supplementary material, which is available to authorized users.  相似文献   
88.
The ends of eukaryotic chromosomes consist of long tracts of repetitive GT-rich DNA with variable sequence homogeneity between and within organisms. Telomeres terminate in a conserved 3'-ssDNA overhang that, regardless of sequence variability, is specifically and tightly bound by proteins of the telomere-end protection family. The high affinity ssDNA-binding activity of S. pombe Pot1 protein (SpPot1) is conferred by a DNA-binding domain consisting of two subdomains, Pot1pN and Pot1pC. Previous work has shown that Pot1pN binds a single repeat of the core telomere sequence (GGTTAC) with exquisite specificity, while Pot1pC binds an extended sequence of nine nucleotides (GGTTACGGT) with modest specificity requirements. We find that full-length SpPot1 binds the composite 15mer, (GGTTAC)(2)GGT, and a shorter two-repeat 12mer, (GGTTAC)(2), with equally high affinity (<3 pM), but with substantially different kinetic and thermodynamic properties. The binding mode of the SpPot1/15mer complex is more stable than that of the 12mer complex, with a 2-fold longer half-life and increased tolerance to nucleotide and amino acid substitutions. Our data suggest that SpPot1 protection of heterogeneous telomeres is mediated through 5'-sequence recognition and the use of alternate binding modes to maintain high affinity interaction with the G-strand, while simultaneously discriminating against the complementary strand.  相似文献   
89.
LIN28 function is fundamental to the activity and behavior of human embryonic stem cells (hESCs) and induced pluripotent stem cells. Its main roles in these cell types are the regulation of translational efficiency and let-7 miRNA maturation. However, LIN28-associated mRNA cargo shifting and resultant regulation of translational efficiency upon the initiation of differentiation remain unknown. An RNA-immunoprecipitation and microarray analysis protocol, eRIP, that has high specificity and sensitivity was developed to test endogenous LIN28-associated mRNA cargo shifting. A combined eRIP and polysome analysis of early stage differentiation of hESCs with two distinct differentiation cues revealed close similarities between the dynamics of LIN28 association and translational modulation of genes involved in the Wnt signaling, cell cycle, RNA metabolism and proteasomal pathways. Our data demonstrate that change in translational efficiency is a major contributor to early stages of differentiation of hESCs, in which LIN28 plays a central role. This implies that eRIP analysis of LIN28-associated RNA cargoes may be used for rapid functional quality control of pluripotent stem cells under manufacture for therapeutic applications.  相似文献   
90.
Cdc13, the telomere end-binding protein from Saccharomyces cerevisiae, is a multidomain protein that specifically binds telomeric single-stranded DNA (ssDNA) with exquisitely high affinity to coordinate telomere maintenance. Recent structural and genetic data have led to the proposal that Cdc13 is the paralog of RPA70 within a telomere-specific RPA complex. Our understanding of Cdc13 structure and biochemistry has been largely restricted to studies of individual domains, precluding analysis of how each domain influences the activity of the others. To better facilitate a comparison to RPA70, we evaluated the ssDNA binding of full-length S. cerevisiae Cdc13 to its minimal substrate, Tel11. We found that, unlike RPA70 and the other known telomere end-binding proteins, the core Cdc13 ssDNA-binding activity is wholly contained within a single tight-binding oligosaccharide/oligonucleotide/oligopeptide binding (OB)-fold. Because two OB-folds are implicated in dimerization, we also evaluated the relationship between dimerization and ssDNA-binding activity and found that the two activities are independent. We also find that Cdc13 binding exhibits positive cooperativity that is independent of dimerization. This study reveals that, while Cdc13 and RPA70 share similar domain topologies, the corresponding domains have evolved different and specialized functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号