首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   28篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2015年   3篇
  2014年   8篇
  2013年   6篇
  2012年   7篇
  2011年   7篇
  2010年   2篇
  2009年   6篇
  2008年   8篇
  2007年   7篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   6篇
  1999年   8篇
  1998年   10篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   6篇
  1992年   6篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1972年   1篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1966年   2篇
  1954年   1篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
21.
Familial tumoral calcinosis (FTC) is a rare autosomal recessive disorder characterized by the progressive deposition of calcified masses in cutaneous and subcutaneous tissues, which results in painful ulcerative lesions and severe skin and bone infections. Two major types of FTC have been recognized: hyperphosphatemic FTC (HFTC) and normophosphatemic FTC (NFTC). HFTC was recently shown to result from mutations in two different genes: GALNT3, which codes for a glycosyltransferase, and FGF23, which codes for a potent phosphaturic protein. To determine the molecular cause of NFTC, we performed homozygosity mapping in five affected families of Jewish Yemenite origin and mapped NFTC to 7q21-7q21.3. Mutation analysis revealed a homozygous mutation in the SAMD9 gene (K1495E), which was found to segregate with the disease in all families and to interfere with the protein expression. Our data suggest that SAMD9 is involved in the regulation of extraosseous calcification, a process of considerable importance in a wide range of diseases as common as atherosclerosis and autoimmune disorders.  相似文献   
22.
ARNO is a guanine-nucleotide exchange protein for the ARF family of GTPases. Here we show that in polarized epithelial cells, ARNO is localized exclusively to the apical plasma membrane, where it regulates endocytosis. Expression of ARNO stimulates apical endocytosis of the polymeric immunoglobulin receptor, and coexpression of ARF6 with ARNO leads to a synergistic stimulation of apical endocytosis. Expression of a dominant negative ARF6 mutant, ARF6-T27N, antagonizes this stimulatory effect. Deletion of the N-terminal coiled-coil (CC) domain of ARNO causes the mutant ARNO to localize to both the apical and basolateral plasma membranes. Expression of the CC domain alone abolishes ARNO-induced apical endocytosis as well as co-localization of IgA-receptor complexes with ARNO and clathrin. These results suggest that the CC domain contributes to the specificity of apical localization of ARNO through association with components of the apical plasma membrane. We conclude that ARNO acts together with ARF6 to regulate apical endocytosis.  相似文献   
23.
24.
cAMP stimulates proliferation in many cell types. For many years, cAMP-dependent protein kinase (PKA) represented the only known cAMP effector. PKA, however, does not fully mimic the action of cAMP, indicating the existence of a PKA-independent component. Since cAMP-mediated activation of the G-protein Rap1 and its phosphorylation by PKA are strictly required for the effects of cAMP on mitogenesis, we hypothesized that the Rap1 activator Epac might represent the PKA-independent factor. Here we report that Epac acts synergistically with PKA in cAMP-mediated mitogenesis. We have generated a new dominant negative Epac mutant that revealed that activation of Epac is required for thyroid-stimulating hormone or cAMP stimulation of DNA synthesis. We demonstrate that Epac's action on cAMP-mediated activation of Rap1 and cAMP-mediated mitogenesis depends on the subcellular localization of Epac via its DEP domain. Disruption of the DEP-dependent subcellular targeting of Epac abolished cAMP-Epac-mediated Rap1 activation and thyroid-stimulating hormone-mediated cell proliferation, indicating that an Epac-Rap-PKA signaling unit is critical for the mitogenic action of cAMP.  相似文献   
25.
Caveolae are flask-shaped invaginations at the plasma membrane that constitute a subclass of detergent-resistant membrane domains enriched in cholesterol and sphingolipids and that express caveolin, a caveolar coat protein. Autocrine motility factor receptor (AMF-R) is stably localized to caveolae, and the cholesterol extracting reagent, methyl-beta-cyclodextrin, inhibits its internalization to the endoplasmic reticulum implicating caveolae in this distinct receptor-mediated endocytic pathway. Curiously, the rate of methyl-beta-cyclodextrin-sensitive endocytosis of AMF-R to the endoplasmic reticulum is increased in ras- and abl-transformed NIH-3T3 cells that express significantly reduced levels of caveolin and few caveolae. Overexpression of the dynamin K44A dominant negative mutant via an adenovirus expression system induces caveolar invaginations sensitive to methyl-beta-cyclodextrin extraction in the transformed cells without increasing caveolin expression. Dynamin K44A expression further inhibits AMF-R-mediated endocytosis to the endoplasmic reticulum in untransformed and transformed NIH-3T3 cells. Adenoviral expression of caveolin-1 also induces caveolae in the transformed NIH-3T3 cells and reduces AMF-R-mediated endocytosis to the endoplasmic reticulum to levels observed in untransformed NIH-3T3 cells. Cholesterol-rich detergent-resistant membrane domains or glycolipid rafts therefore invaginate independently of caveolin-1 expression to form endocytosis-competent caveolar vesicles via rapid dynamin-dependent detachment from the plasma membrane. Caveolin-1 stabilizes the plasma membrane association of caveolae and thereby acts as a negative regulator of the caveolae-mediated endocytosis of AMF-R to the endoplasmic reticulum.  相似文献   
26.
27.
Amiloride does not alter NaCl avoidance in Fischer-344 rats   总被引:2,自引:2,他引:0  
Fischer-344 (F-344) rats differ from other common rat strains in that they fail to show any preference for NaCl at any concentration in two- bottle preference tests. Because 100 microM amiloride partially blocks the NaCl-evoked chorda tympani (CT) response in electrophysiological studies, we tested NaCl preference (0.068-0.273 M) in F-344 rats with and without 100 microM amiloride solution as the solvent. A third group was tested with unadulterated NaCl solutions following CT transection. Amiloride had no significant effect on the NaCl preference-aversion function, whereas CT transection significantly reduced NaCl avoidance. These results suggest that the amiloride-sensitive component of the NaCl response is not necessary for F-344 rats to display avoidance of NaCl, but the entire CT input is.   相似文献   
28.
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that causes life-threatening disease in patients who are immunosuppressed for bone marrow or tissue transplantation or who have AIDS (ref. 1). HCMV establishes lifelong latent infections and, after periodic reactivation from latency, uses a panel of immune evasion proteins to survive and replicate in the face of robust, fully primed host immunity. Monocyte/macrophages are important host cells for HCMV, serving as a latent reservoir and as a means of dissemination throughout the body. Macrophages and other HCMV-permissive cells, such as endothelial and glial cells, can express MHC class II proteins and present antigens to CD4+ T lymphocytes. Here, we show that the HCMV protein US2 causes degradation of two essential proteins in the MHC class II antigen presentation pathway: HLA-DR-alpha and DM-alpha. This was unexpected, as US2 has been shown to cause degradation of MHC class I (refs. 5,6), which has only limited homology with class II proteins. Expression of US2 in cells reduced or abolished their ability to present antigen to CD4+ T lymphocytes. Thus, US2 may allow HCMV-infected macrophages to remain relatively 'invisible' to CD4+ T cells, a property that would be important after virus reactivation.  相似文献   
29.
Recent evidence suggests that apical and basolateral endocytic pathways in epithelia converge in an apically located, pericentriolar endosomal compartment termed the apical recycling endosome. In this compartment, apically and basolaterally internalized membrane constituents are thought to be sorted for recycling back to their site of origin or for transcytosis to the opposite plasma membrane domain. We report here that in the epithelial cell line Madin–Darby Canine Kidney (MDCK), antibodies to Rab11a label an apical pericentriolar endosomal compartment that is dependent on intact microtubules for its integrity. Furthermore, this compartment is accessible to a membrane-bound marker (dimeric immunoglobulin A [IgA]) internalized from either the apical or basolateral pole, functionally defining it as the apical recycling endosome. We have also examined the role of a closely related epithelial-specific Rab, Rab25, in the regulation of membrane recycling and transcytosis in MDCK cells. When cDNA encoding Rab25 was transfected into MDCK cells, the protein colocalized with Rab11a in subapical vesicles. Rab25 transfection also altered the distribution of Rab11a, causing the coalescence of immunoreactivity into multiple denser vesicular structures not associated with the centrosome. Nevertheless, nocodazole still dispersed these vesicles, and dimeric IgA internalized from either the apical or basolateral membrane was detected in endosomes labeled with antibodies to both Rab11a and Rab25. Overexpression of Rab25 decreased the rate of IgA transcytosis and of apical, but not basolateral, recycling of internalized ligand. Conversely, expression of the dominant-negative Rab25T26N did not alter either apical recycling or transcytosis. These results indicate that both Rab11a and Rab25 associate with the apical recycling system of epithelial cells and suggest that Rab25 may selectively regulate the apical recycling and/or transcytotic pathways.  相似文献   
30.
A fascinating question in neuroscience is how ensembles of neurons, originating from different locations, extend to the proper place and by the right time to create precise circuits. Here, we investigate this question in the Drosophila visual system, where photoreceptors re-sort in the lamina to form the crystalline-like neural superposition circuit. The repeated nature of this circuit allowed us to establish a data-driven, standardized coordinate system for quantitative comparison of sparsely perturbed growth cones within and across specimens. Using this common frame of reference, we investigated the extension of the R3 and R4 photoreceptors, which is the only pair of symmetrically arranged photoreceptors with asymmetric target choices. Specifically, we found that extension speeds of the R3 and R4 growth cones are inherent to their cell identities. The ability to parameterize local regularity in tissue organization facilitated the characterization of ensemble cellular behaviors and dissection of mechanisms governing neural circuit formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号