首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   9篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   10篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   10篇
  2014年   12篇
  2013年   8篇
  2012年   11篇
  2011年   12篇
  2010年   4篇
  2009年   2篇
  2008年   5篇
  2007年   7篇
  2006年   3篇
  2005年   7篇
  2004年   5篇
  2003年   8篇
  2002年   3篇
  2001年   4篇
  2000年   8篇
  1999年   4篇
  1998年   8篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1989年   1篇
  1988年   4篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1971年   1篇
  1966年   1篇
  1960年   2篇
  1927年   1篇
排序方式: 共有180条查询结果,搜索用时 15 毫秒
31.
Protein carbonyl detection has been commonly used to analyze the degree of damage to proteins under oxidative stress conditions. Most laboratories rely on derivatization of carbonyl groups with dinitrophenylhydrazine followed by Western blot analysis using antibodies against the dinitrophenyl moiety. This paper describes a protein carbonyl detection method based on fluorescent Bodipy, Cy3 and Cy5 hydrazides. Using this approach, Western blot and immunodetection are no longer needed, shortening the procedure and increasing accuracy. Combination of Cy3 and Cy5 hydrazides allows multiplexing analyses in a single two-dimensional gel. Derivatization with Bodipy hydrazide allows easy matching of the spots of interest and those obtained by general fluorescent protein staining methods, which facilitates excising target proteins from the gels and identifying them. This method is effective for detecting protein carbonylation in samples of proteins submitted to metal-catalyzed oxidation "in vitro" and assessing the effect of hydrogen peroxide and chronological aging on protein oxidative damage in yeast cells.  相似文献   
32.
ABSTRACT: BACKGROUND: The contribution of a gene to the fitness of a bacterium can be assayed by whether and to what degree the bacterium tolerates transposon insertions in that gene. We use this fact to compare the fitness of syntenic homologous genes among related Salmonella strains to reveal differences not apparent at the gene sequence level. RESULTS: A transposon Tn5 derivative was used to construct mutants in Salmonella Typhimurium ATCC14028 (STM1) and Salmonella Typhi Ty2 (STY1), which were then grown in rich media. The locations of 234,152 and 53,556 integration sites, respectively, were mapped by sequencing. These data were compared to similar data available for a different Ty2 strain (STY2) and essential genes identified in E. coli K-12 (ECO). Of 277 genes considered essential in ECO, all had syntenic homologs in STM1, STY1, and STY2, and all but nine genes were either devoid of Tn insertions or had very few. For three of these nine genes, part of the annotated gene lacked Tn integrations (yejM, ftsN and murB). At least one of the other six genes, trpS, had a potentially functionally redundant gene encoded elsewhere in Salmonella but not in ECO. An additional 165 genes were almost entirely devoid of transposon integrations in all three Salmonella strains examined, including many genes associated with protein and DNA synthesis. Four of these genes (STM14_1498.L, STM14_2872, STM14_3360.RJ, and STM14_5442) are not found in E. coli. Notable differences in the extent of gene selection were also observed among the three different Salmonella isolates. Mutations in hns, for example, were selected against in STM1 but not in the two STY strains, which have a defect in rpoS rendering hns nonessential. CONCLUSIONS: Comparisons among transposon integration profiles from different members of a species and among related species, all grown in similar conditions, identify differences in gene fitness among syntenic homologous genes. Further differences in fitness profiles among shared genes can be expected in other selective environments, with potential relevance for comparative systems biology.  相似文献   
33.
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2 d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3 was re-oxidized back to NO3 via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.  相似文献   
34.
Apo2 ligand (Apo2L)/TRAIL induces apoptosis of cancer cells that express the specific receptors while sparing normal cells. Because the tumor microenvironment protects myeloma from chemotherapy, we investigated whether hemopoietic stroma induces resistance to Apo2L/TRAIL apoptosis in this disease. Apo2L/TRAIL-induced death was diminished in myeloma cell lines (RPMI 8226, U266, and MM1s) directly adhered to a human immortalized HS5 stroma cell line but not adhered to fibronectin. In a Transwell assay, with myeloma in the upper well and HS5 cells in the lower well, Apo2L/TRAIL apoptosis was reduced when compared with cells exposed to medium in the lower well. Using HS5 and myeloma patients' stroma-conditioned medium, we determined that soluble factor(s) produced by stroma-myeloma interactions are responsible for a reversible Apo2/TRAIL apoptosis resistance. Soluble factor(s) attenuated procaspase-8, procaspase-3, and poly(ADP-ribose) polymerase cleavage and diminished mitochondrial membrane potential changes without affecting Bcl-2 family proteins and/or Apo2L/TRAIL receptors. Soluble factor(s) increased the baseline levels of the anti-apoptotic protein c-FLIP in all cell lines tested. Inhibition of c-FLIP by means of RNA interference increased Apo2/TRAIL sensitivity in RPMI 8226 cells. Unlike direct adhesion to fibronectin, soluble factor(s) have no impact on c-FLIP redistribution within cellular compartments. Cyclohexamide restored Apo2L/TRAIL sensitivity in association with down-regulation of c-FLIP, suggesting that c-FLIP synthesis, not intracellular traffic, is essential for soluble factor(s) to regulate c-FLIP. Additionally, IL-6 conferred resistance to Apo2L/TRAIL-mediated apoptosis in association with increased c-FLIP levels. In conclusion, the immune cytotoxic effect of Apo2L/TRAIL can be restored at least in part by c-FLIP pathway inhibitors.  相似文献   
35.
The otic placode generates the auditory and vestibular sense organs and their afferent neurons; however, how auditory and vestibular fates are specified is unknown. We have generated a fate map of the otic placode and show that precursors for vestibular and auditory cells are regionally segregated in the otic epithelium. The anterior-lateral portion of the otic placode generates vestibular neurons, whereas the posterior-medial region gives rise to auditory neurons. Precursors for vestibular and auditory sense organs show the same distribution. Thus, different regions of the otic placode correspond to particular sense organs and their innervating neurons. Neurons from contiguous domains rarely intermingle suggesting that the regional organisation of the otic placode dictates positional cues to otic neurons. But, in addition, vestibular and cochlear neurogenesis also follows a stereotyped temporal pattern. Precursors from the anterior-lateral otic placode delaminate earlier than those from its medial-posterior portion. The expression of the proneural genes NeuroM and NeuroD reflects the sequence of neuroblast formation and differentiation. Both genes are transiently expressed in vestibular and then in cochlear neuroblasts, while differentiated neurons express Islet1, Tuj1 and TrkC, but not NeuroM or NeuroD. Together, our results indicate that the position of precursors within the otic placode confers identity to sensory organs and to the corresponding otic neurons. In addition, positional information is integrated with temporal cues that coordinate neurogenesis and sensory differentiation.  相似文献   
36.
37.
We have designed synthetic peptides that mimic the primary and secondary structure of the cationic lipopeptide antibiotic polymyxin B (PxB) in order to determine the structural requirements for membrane action and to assess possible therapeutic potential. Two analogues with related sequences to that of PxB, but including synthetic simplifications (disulphide bridge between two cysteines in positions 4 and 10, N-terminal nonanoic acid), have been synthesized. Peptide-lipid interactions have been studied by fluorescence resonance energy transfer between pyrene and 4,4-difluoro-5-methyl-4-bora-3alpha,4alpha-diaza-s-indacene-3-dodecanoyl (BODIPY)probes covalently linked to phospholipids, and the possibility of membrane disruption or permeabilization has been assessed by light scattering and fluorescence quenching assays. The synthetic peptide sP-B, which closely mimics the primary and secondary structures of PxB, binds to vesicles of anionic 1-palmitoyl-2-oleoylglycero-sn-3-phosphoglycerol (POPG) or of lipids extracted from Escherichia coli membranes, and induces apposition of the vesicles and selective lipid exchange without permeabilization of the membrane. We conclude that sP-B forms functional vesicle-vesicle contacts that are selective, as previously described for PxB. The second analogue, sP-C, has a permutation of two amino acids that breaks the hydrophobic patch formed by D-Phe and Leu residues on the cyclic part of the sequence. sP-C lipopeptide is more effective than sP-B in inducing lipid mixing, but shows no selectivity for the lipids that exchange through the vesicle-vesicle contacts, and at high concentrations has a membrane-permeabilizing effect. The deacylated and non-antibiotic derivative PxB-nonapeptide (PxB-NP) does not induce the formation of functional intervesicle contacts in the range of concentrations studied.  相似文献   
38.
39.
The hybrid Richter-110 (Vitis berlandieri x Vitis rupestris) (R-110) has the reputation of being a genotype strongly adapted to drought. A study was performed with plants of R-110 subjected to water withholding followed by re-watering. The goal was to analyze how stomatal conductance (g(s)) is regulated with respect to different physiological variables under water stress and recovery, as well as how water stress affects adjustments of water use efficiency (WUE) at the leaf level. Water stress induced a substantial stomatal closure and an increase in WUE, which persisted many days after re-watering. The g(s) during water stress was mainly related to the content of ABA in the xylem and partly related to plant hydraulic conductivity but not to leaf water potential. By contrast, low g(s) during re-watering did not correlate with ABA contents and was only related to a sustained decreased hydraulic conductivity. In addition to a complex physiological regulation of stomatal closure, g(s) and rate of transpiration (E) were strongly affected by leaf-to-air vapor pressure deficit (VPD) in a way dependent of the treatment. Interestingly, E increased with increasing VPD in control plants, but decreased with increasing VPD in severely stressed plants. All together, the fine stomatal regulation in R-110 resulted in very high WUE at the leaf level. This genotype is revealed to be very interesting for further studies on the physiological mechanisms leading to regulation of stomatal responsiveness and WUE in response to drought.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号