首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   6篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   6篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1972年   3篇
  1968年   1篇
  1966年   2篇
排序方式: 共有73条查询结果,搜索用时 171 毫秒
11.
12.
Intramolecular electron transfer within proteins is an essential process in bioenergetics. Redox cofactors are embedded in proteins, and this matrix strongly influences their redox potential. Several cofactors are usually found in these complexes, and they are structurally organized in a chain with distances between the electron donor and acceptor short enough to allow rapid electron tunneling. Among the different interactions that contribute to the determination of the redox potential of these cofactors, electrostatic interactions are important but restive to direct experimental characterization. The influence of interaction between cofactors is evidenced here experimentally by means of redox titrations and time-resolved spectroscopy in a chimeric bacterial reaction center (Maki, H., Matsuura, K., Shimada, K., and Nagashima, K. V. P. (2003) J. Biol. Chem. 278, 3921-3928) composed of the core subunits of Rubrivivax gelatinosus and the tetraheme cytochrome of Blastochloris viridis. The absorption spectra and orientations of the various cofactors of this chimeric reaction center are similar to those found in their respective native protein, indicating that their local environment is conserved. However, the redox potentials of both the primary electron donor and its closest heme are changed. The redox potential of the primary electron donor is downshifted in the chimeric reaction center when compared with the wild type, whereas, conversely, that of its closet heme is upshifted. We propose a model in which these reciprocal shifts in the midpoint potentials of two electron transfer partners are explained by an electrostatic interaction between them.  相似文献   
13.
More and more research are being done on food bolus formation during mastication. However, the process of bolus formation in the mouth is difficult to observe. A mastication simulator, the Artificial Masticatory Advanced Machine (AM2) was developed to overcome this difficulty and is described here. Different variables can be set such as the number of masticatory cycles, the amplitude of the mechanical movements simulating the vertical and lateral movements of the human lower jaw, the masticatory force, the temperature of the mastication chamber and the injection and the composition of saliva. The median sizes of the particles collected from the food boluses made by the AM2 were compared with those of human boluses obtained with peanuts and carrots as test foods. Our results showed that AM2 mimicked human masticatory behavior, producing a food bolus with similar granulometric characteristics.  相似文献   
14.
Plants are particularly prone to photo-oxidative damage caused by excess light. Photoprotection is essential for photosynthesis to proceed in oxygenic environments either by scavenging harmful reactive intermediates or preventing their accumulation to avoid photoinhibition. Carotenoids play a key role in protecting photosynthesis from the toxic effect of over-excitation; under excess light conditions, plants accumulate a specific carotenoid, zeaxanthin, that was shown to increase photoprotection. In this work we genetically dissected different components of zeaxanthin-dependent photoprotection. By using time-resolved differential spectroscopy in vivo, we identified a zeaxanthin-dependent optical signal characterized by a red shift in the carotenoid peak of the triplet-minus-singlet spectrum of leaves and pigment-binding proteins. By fractionating thylakoids into their component pigment binding complexes, the signal was found to originate from the monomeric Lhcb4–6 antenna components of Photosystem II and the Lhca1–4 subunits of Photosystem I. By analyzing mutants based on their sensitivity to excess light, the red-shifted triplet-minus-singlet signal was tightly correlated with photoprotection in the chloroplasts, suggesting the signal implies an increased efficiency of zeaxanthin in controlling chlorophyll triplet formation. Fluorescence-detected magnetic resonance analysis showed a decrease in the amplitude of signals assigned to chlorophyll triplets belonging to the monomeric antenna complexes of Photosystem II upon zeaxanthin binding; however, the amplitude of carotenoid triplet signal does not increase correspondingly. Results show that the high light-induced binding of zeaxanthin to specific proteins plays a major role in enhancing photoprotection by modulating the yield of potentially dangerous chlorophyll-excited states in vivo and preventing the production of singlet oxygen.  相似文献   
15.
On the isolated perfused rat pancreas phenformin at high concentrations (10 mg/1, 50 mg/1 and 100 mg/1) provokes an increase of the insulin and lactate output in the effluent liquid. In no case is glucagon secretion modified by this substance. There exists a statistically significant correlations between the increase in insulin output and the increase in lactate output induced by phenformin.  相似文献   
16.
Changes in the composition and size structure of cladoceran remains collected in sediment traps (ST) were compared at a monthly time-resolution to the changes in the cladoceran source communities in order to assess the effects of production, sedimentation and taphonomic processes on the composition, completeness of time series and size structure of cladoceran remains in a large deep monomictic subalpine lake. Cladoceran remains collected in the ST globally reflected seasonal changes in the composition of the source community for the dominant taxa (Daphnia sp., Eubosmina spp. and. D. brachyurum) but failed in capturing accurately the seasonal changes in the abundance of the least abundant species, B. longirostris. Using allometric relationships, the average body size of the organisms that produced the remains retrieved in the ST could be reconstructed. Although the cladoceran average body size estimated from trap remains was always smaller than that of the source communities, temporal changes in the average body size of the dominant taxa in the source community were captured by trap samples. Our results showed that, in this deep subalpine lake, cladoceran remains production, sedimentation and taphonomic processes within the water column did not alter the compositional fidelity of remains at seasonal and annual time scales for the dominant taxa. Results did not show any significant over-representation of Bosmina and subsequent under-representation of Daphnia in contrast to previous studies on small and flat lakes. Our results suggest that the frequently observed under-estimation of Daphnia in fossil assemblages could be a consequence of the mesh size used when processing sediment core samples rather than of varying magnitude of degradation processes between small or flat lakes and deep lakes. Finally, our results support the use of the size of cladoceran remains within paleo-ecological studies to assess past changes in the size structure of the source communities.  相似文献   
17.
Survival of Escherichia coli O157:H7 was investigated using a dynamic gastrointestinal model. A high bacterial mortality was observed in the stomach and duodenum. In contrast, bacteria grew in the distal parts of the small intestine. The coadministration of Saccharomyces cerevisiae CNCM I-3856 led to a significant reduction of bacterial resumption, maybe through ethanol production.  相似文献   
18.
The objective of this work was to evaluate soy protein isolate (SPI) and acylated soy protein (SPA) as spray-drying encapsulation carriers for oral pharmaceutical applications. SPI acylation was performed by the Schotten–Baumann reaction. SPA, with an acylation rate of 41%, displayed a decrease in solubility in acidic conditions, whereas its solubility was unaffected by basic conditions. The drug encapsulation capacities of both SPI and SPA were tested with ibuprofen (IBU) as a model poorly soluble drug. IBU-SPI and IBU-SPA particles were obtained by spray-drying under eco-friendly conditions. Yields of 70 to 87% and microencapsulation efficiencies exceeding 80% were attained for an IBU content of 20 to 40% w/w, confirming the excellent microencapsulation properties of SPI and the suitability of the chemical modification. The in vitro release kinetics of IBU were studied in simulated gastrointestinal conditions (pH 1.2 and pH 6.8, 37°C). pH-sensitive release patterns were observed, with an optimized low rate of release in simulated gastric fluid for SPA formulations, and a rapid and complete release in simulated intestinal fluid for both formulations, due to the optimal pattern of pH-dependent solubility for SPA and the molecular dispersion of IBU in soy protein. These results demonstrate that SPI and SPA are relevant for the development of pH-sensitive drug delivery systems for the oral route.  相似文献   
19.
20.
We present a reliable, simple, and quick system for screening antibody-antigen complexes on nitrocellulose. The apparatus necessary for this system is inexpensive and easy to use, and it can be adapted to blot or dot analysis without any modification. The number of antibody-antigen combinations that can be tested in one experiment ranges from 25 to 31 for blot analysis and from 345 to 600 for dot analysis. This system also offers numerous experimental advantages: it makes it possible to estimate with only one experiment the contribution of the different reaction stages to background noise and so allows unambiguous interpretation of the antibody-antigen reaction. Furthermore, this system can be used for any hybridization experiment on nitrocellulose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号