The degradation of triglycerides in oil palm fruit due to an endogenous lipase in the pulp is the main reason for acidification of palm oil, which causes major economic losses and is currently mainly associated with the FLL1 gene. We designed this study to identify all the major genes controlling differences in acidity and lipase activity in the oil palm fruit mesocarp and determine a molecular markers kit to allow marker-assisted selection of commercial varieties with low acidity. Not only one gene (FLL1) but three closely linked genes including FLL1 were found and characterized in LM2T_EgCIR184O12c, a bacterial artificial chromosome sequence of 231 kb. Intra-gene PCR-based markers were designed for these genes. A QTL gene co-localization analysis for oil acidity (percentage of fatty acids released) was performed on two mapping populations. It evidenced a single major QTL at our lipase gene loci, explaining 84 to 92% of phenotypic variation, and validating the main genetic control of palm oil acidification by FLL1 and/or by the two new lipase genes. The three lipase genes had high homology to demonstrated triacylglycerol lipases. While FLL1 shows the highest expression levels, the two other genes may also contribute to oil acidity. Our molecular markers of lipase genes and the associated major QTL is an important step towards marker-assisted selection of commercial varieties with low acidity. 相似文献
Differential distribution and phosphorylation of tau proteins were studied in developing kitten brain by using several antibodies, and was compared to phosphorylation in Alzheimer's disease. Several antibodies demonstrated the presence of phosphorylated tau proteins during kitten brain development and identified pathological structures in human brain tissue. Antibody AD2, recognized tau in kittens and adult cats, but reacted in Alzheimer's tissue only with a pathological tau form. Antibody AT8 was prominent in developing kitten neurons and was found in axons and dendrites. After the first postnatal month this phosphorylation type disappeared from axons. Furthermore, dephosphorylation of kitten tau with alkaline phosphatase abolished immunoreactivity of AT8, but not that of AD2, pointing to a protection of the AD2 epitope in cats. Tau proteins during early cat brain development are phosphorylated at several sites that are also phosphorylated in paired helical filaments during Alzheimer's disease. In either event, phosphorylation of tau may play a crucial role to modulate microtubule dynamics, contributing to increased microtubule instability and promoting growth of processes during neuronal development or changing dynamic properties of the cytoskeleton and contributing to the formation of pathological structures in neurodegenerative diseases. 相似文献
BackgroundCameroon is endemic for Buruli ulcer (BU) and organised institutional BU control began in 2002. The objective was to describe the evolution, achievements and challenges of the national BU control programme (NBUCP) and to make suggestions for scaling up the programme.MethodsWe analysed collated data on BU from 2001 to 2014 and reviewed activity reports NBUCP in Cameroon. Case-detection rates and key BU control indicators were calculated and plotted on a time scale to determine trends in performance. A linear regression analysis of BU detection rate from 2005–2014 was done. The regression coefficient was tested statistically for the significance in variation of BU detection rate.Conclusion/SignificanceAlthough institutional BU control Cameroon only began 30 years after the first cases were reported in 1969, a number of milestones have been attained. These would serve as stepping stones for charting the way forward and improving upon control activities in the country if the major challenge of resource allocation is dealt with. 相似文献
The cyclic process of autophosphorylation of the C-terminal tyrosine cluster (YC) of a bacterial tyrosine kinase and its subsequent dephosphorylation following interactions with a counteracting tyrosine phosphatase regulates diverse physiological processes, including the biosynthesis and export of polysaccharides responsible for the formation of biofilms or virulence-determining capsules. We provide here the first detailed insight into this hitherto uncharacterized regulatory interaction at residue-specific resolution using Escherichia coli Wzc, a canonical bacterial tyrosine kinase, and its opposing tyrosine phosphatase, Wzb. The phosphatase Wzb utilizes a surface distal to the catalytic elements of the kinase, Wzc, to dock onto its catalytic domain (WzcCD). WzcCD binds in a largely YC-independent fashion near the Wzb catalytic site, inducing allosteric changes therein. YC dephosphorylation is proximity-mediated and reliant on the elevated concentration of phosphorylated YC near the Wzb active site resulting from WzcCD docking. Wzb principally recognizes the phosphate of its phosphotyrosine substrate and further stabilizes the tyrosine moiety through ring stacking interactions with a conserved active site tyrosine. 相似文献
Sucrose phosphorylase catalyzes the reversible conversion of sucrose (alpha-D-glucopyranosyl-1,2-beta-D-fructofuranoside) and phosphate into D-fructose and alpha-D-glucose 1-phosphate. We report on the molecular cloning and expression of the structural gene encoding sucrose phosphorylase from Leuconostoc mesenteroides (LmSPase) in Escherichia coli DH10B. The recombinant enzyme, containing an 11 amino acid-long N-terminal metal affinity fusion peptide, was overproduced 60-fold in comparison with the natural enzyme. It was purified to apparent homogeneity using copper-loaded Chelating Sepharose and obtained in 20% yield with a specific activity of 190 Umg(-1). LmSPase was covalently attached onto Eupergit C with a binding efficiency of 50% and used for the continuous production of alpha-D-glucose 1-phosphate from sucrose and phosphate (600 mM each) in a packed-bed immobilised enzyme reactor (30 degrees C, pH 7.0). The reactor was operated at a stable conversion of 91% (550 mM product) and productivity of approximately 11 gl(-1)h(-1) for up to 600 h. A kinetic study of transglucosylation by soluble LmSPase was performed using alpha-d-glucose 1-phosphate as the donor substrate and various alcohols as acceptors. D- and L-arabitol were found to be good glucosyl acceptors. 相似文献
Large-pool solvent/detergent (SD) plasma for transfusion exhibits reduced alpha 2-antiplasmin (alpha2-AP; SERPINF2) functional activity. The reason for the loss of alpha2-AP has not been described and could be due to the SD incubation itself and/or to the processing steps implemented to remove the solvent and the detergent. We have studied alpha2-AP activity during six down-scale preparations of plasma virally-inactivated by 1% (v/v) TnBP combined with two different non-ionic detergents, either 1% Triton X-100 or 1% Triton X-45, at 31 degrees C for 4h. The SD-treated plasmas were then extracted with 7.5% (v/v) soybean oil, centrifuged at 3800 x g for 30 min, and subjected to hydrophobic interaction chromatography (HIC) to remove the SD agents. Control runs without TnBP and Triton were performed to evidence possible impacts of each process step on alpha2-AP activity. TnBP, Triton X-100, and Triton X-45 were measured at all stages of the processes to evaluate potential interferences with the alpha2-AP assay. Alpha 2-AP activity was about 10% that of starting plasma after 1% TnBP-1% Triton X-100 incubation and about 50% after oil extractions, centrifugation, and HIC. By contrast about 73% of the antiplasmin activity was found after the incubation with 1% TnBP and 1% Triton X-45, 88% after removal of the SD agents by oil extractions, 90% after centrifugation and 92% after HIC. The control runs performed without SD agents showed that the process steps did not affect the alpha2-AP activity. In conclusion, the agent altering alpha2-AP activity in SD-plasma is Triton X-100. The choice of detergents for the SD viral inactivation of therapeutic plasma fractions used in patients at risk of fibrinolysis should consider the impact on alpha2-AP activity. 相似文献
The roots and shoots of Gentiana kurroo Royle are rich sources of gentiopicroside (GPD). The plant is used traditionally for curing many metabolic diseases. The exploitation of G. kurroo in its native habitat has placed the plant on the critically endangered list of plants in India. One of the ways of creating an alternative source of G. kurroo is through in vitro propagation. Although a number of in vitro propagation methods for G. kurroo exist, there are no studies that have optimized methods for rapid in vitro shoot production and the production of GPD. The objective of this study was to develop an effective in vitro shoot multiplication system of G. kurroo. Furthermore, the influence of solid and liquid induction media were investigated. Shoots were regenerated from embryogenic callus and transferred to solid and liquid Murashige and Skoog (MS) and Gamborg (B5) media fortified with various concentrations of BA containing different auxins. It was observed that the liquid medium produced a higher number of shoots than the solid media. MS supplemented with BA (2 mg/L) and IAA (0.5 mg/L) produced?~?5.58 shoots per explant on the solid medium, while?~?16 shoots per explant was obtained in the liquid medium. High-Performance Liquid Chromatography (HPLC) analysis of in vitro shoots grown in the liquid medium produced 9.13 mg/g dry weight (DW) of GPD which is seven-fold higher than that of naturally growing plant shoots. The in vitro protocol for G. kurroo developed in this study may be used for industrial production of GPD.
The high affinity IgE receptor, FcεRI, plays a key role in the immunological pathways involved in allergic asthma. Previously we have demonstrated that human neutrophils isolated from allergic asthmatics express a functional FcεRI, and therefore it was of importance to examine the factors regulating its expression. In this study, we found that neutrophils from allergic asthmatics showed increased expression of FcεRI-α chain surface protein, total protein and mRNA compared with those from allergic non asthmatics and healthy donors (p<0.001). Interestingly, in neutrophils isolated from allergic asthmatics, FcεRI-α chain surface protein and mRNA expression were significantly greater during the pollen season than outside the pollen season (n = 9, P = 0.001), an effect which was not observed either in the allergic non asthmatic group or the healthy donors (p>0.05). Allergen exposure did not affect other surface markers of neutrophils such as CD16/FcγRIII or IL-17R. In contrast to stimulation with IgE, neutrophils incubated with TH2 cytokines IL-9, GM-CSF, and IL-4, showed enhanced FcεRI-α chain surface expression. In conclusion, these results suggest that enhanced FcεRI expression in human neutrophils from allergic asthmatics during the pollen season can make them more susceptible to the biological effects of IgE, providing a possible new mechanism by which neutrophils contribute to allergic asthma. 相似文献
In order to assess the status of lemurs along the lower reaches of the Mahavavy in north-west Madagascar, we carried out transect line sampling at Anjamena between April and August 1995. These data were complemented by additional absence–presence surveys conducted in 1994 and 1995 in many of the remaining forested areas of the region. This is the first study of lemur population density estimates for the faunal subregion between the rivers Mahavavy and Betisboka. Six sympatric lemurs are found at Anjamena: Cheirogaleus medius, Eulemur fulvus rufus, E. mongoz, Lepilemur sp., Microcebus murinus and Propithecus verreauxi coronatus. Data suggest that in some parts of the region large numbers of lemurs may still be found (E. f. rufus 121 individuals per km2, E. mongoz (45), Lepilemur sp. (110), M. murinus (85) and P. v. coronatus (173)). No density data are provided for C. medius. In conclusion, as high lemur population densities may still be found and, in particular, P. v. coronatus is not known to exist in any protected area, Anjamena could serve as an important addition to the protected area system of north-west Madagascar. 相似文献