首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445篇
  免费   36篇
  2022年   7篇
  2021年   13篇
  2020年   4篇
  2019年   7篇
  2018年   9篇
  2017年   3篇
  2016年   19篇
  2015年   7篇
  2014年   15篇
  2013年   29篇
  2012年   35篇
  2011年   32篇
  2010年   11篇
  2009年   13篇
  2008年   24篇
  2007年   17篇
  2006年   22篇
  2005年   21篇
  2004年   21篇
  2003年   13篇
  2002年   8篇
  2001年   13篇
  2000年   6篇
  1999年   7篇
  1998年   5篇
  1997年   8篇
  1996年   5篇
  1995年   10篇
  1994年   5篇
  1993年   6篇
  1992年   8篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1988年   5篇
  1987年   7篇
  1984年   7篇
  1983年   2篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1975年   4篇
  1974年   7篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
  1970年   3篇
  1968年   2篇
  1967年   5篇
排序方式: 共有481条查询结果,搜索用时 46 毫秒
101.
102.
Insulin-dependent diabetes mellitus (IDDM) has been found to be highly associated with a rare allele of the complement protein, properdin factor B (BF). Assuming that there is a susceptibility gene for IDDM tightly linked to the genetic locus forBF and the major histocompatibility complex (MHC), the distribution of BF types in more than 1100 North American IDDM patients strongly argues for the rejection of dominant, epistatic, and overdominant modes of inheritance. Other evidence suggesting complex modes of inheritance for IDDM is reviewed and it is concluded that our observations and published data are consistent with the idea of susceptibility to IDDM being inherited as a simple autosomal recessive trait. — C4 and C2 types, also linked toBF and theMHC, were investigated too. C4 Fs0 was found to be increased in association with BF F1, while C4 f0S and C2 B were each found to occur twice as frequently as in a control population and will be of value in defining haplotypes associated with susceptibility to IDDM.  相似文献   
103.
Knowledge of the nature of pericardial connective tissue components is incomplete. To gain a better understanding of the composition of this tissue, bovine parietal pericardium was extracted with 4 M guanidine hydrochloride yielding a proteoglycan-containing protein mixture. This was fractionated by a three-step chromatographic procedure with the resultant purification of a 75-110 Kd proteoglycan. The purified proteoglycan was susceptible to chondroitinase ABC digestion but resistant to chondroitinase AC and nitrous acid degradation suggesting the presence of dermatan sulfate glycosaminoglycan(s). This is the first reported isolation of a proteoglycan from parietal pericardium.  相似文献   
104.
105.
106.
107.
108.
Protein misfolding is implicated in neurodegenerative diseases and occurs in aging. However, the contribution of the misfolded ensembles to toxicity remains largely unknown. Here we introduce 2 primate cell models of destabilized proteins devoid of specific cellular functions and interactors, as bona fide misfolded proteins, allowing us to isolate the gain-of-function of non-native structures. Both GFP-degron and a mutant chloramphenicol-acetyltransferase fused to GFP (GFP-Δ9CAT) form perinuclear aggregates, are degraded by the proteasome, and colocalize with and induce the chaperone Hsp70 (HSPA1A/B) in COS-7 cells. We find that misfolded proteins neither significantly compromise chaperone-mediated folding capacity nor induce cell death. However, they do induce growth arrest in cells that are unable to degrade them and promote stress-induced death upon proteasome inhibition by MG-132 and heat shock. Finally, we show that overexpression of all heat-shock factor-1 (HSF1) and Hsp70 proteins, as well as wild-type and deacetylase-deficient (H363Y) SIRT1, rescue survival upon stress, implying a noncatalytic action of SIRT1 in response to protein misfolding. Our study establishes a novel model and extends our knowledge on the mechanism of the function-independent proteotoxicity of misfolded proteins in dividing cells.  相似文献   
109.
The circadian timing system (CTS) governs the 24-h rhythm of the organism and, hence, also main pathways responsible for drug pharmacokinetics. P-glycoprotein (P-gp) is a drug transporter that plays a pivotal role in drug absorption, distribution, and elimination, and temporal changes in its activity may affect input, output, activity, and toxicity profile of drugs. In the current study, the influence of different circadian stages on the overall intestinal permeability (P(eff)) of the P-gp substrates talinolol and losartan was evaluated in in situ intestinal perfusion studies in rats. Additionally, in vivo studies in rats were performed by employing the P-gp probe talinolol during the day (nonactive) and night (active) period in rats. Effective intestinal permeabilities of talinolol and losartan were smaller in studies performed during the night (p < .05), indicating that P-gp-dependent intestinal secretion is greater during the nighttime activity span than daytime rest span of the animals. P-gp modulators vinblastine and PSC833 led to a significant decrease of talinolol and losartan exsorption in the intestinal segments as compared with control groups. Strikingly, the permeability-enhancing effect of vinblastine and PSC833 was higher with night perfusions, for both talinolol and losartan. In vivo studies performed with talinolol revealed-consistent with the in situ studies (P(eff) day > night)-a day vs. night difference in the oral availability of talinolol in the group of male rats in terms of the area under the curve (AUC) data (AUC(day) > AUC(night)). The P-gp modulator vinblastine significantly increased talinolol AUC(day) (p < .05), whereas only a weak vinblastine effect was seen in night. According to the in situ data, the functional activity of P-gp was regulated by the CTS in jejunum and ileum, which are major intestinal segments for energy-dependent efflux. In conclusion, circadian rhythms may affect carrier-mediated active efflux and play a role in the absorption process. In addition to daily rhythms in P-gp activity in rat intestine, the in vivo studies indicate that absorption-, distribution-, metabolism-, and elimination-relevant rhythms may be involved in the circadian kinetics of the drug, besides transporter-dependent efflux, such well-known aspects as metabolic or renal clearance or motility. Since this also holds true for a potentially interacting second compound (modulator), modulator effects should be evaluated carefully in transporter related drug-drug interactions.  相似文献   
110.
The mouse anion exchanger AE2/SLC4A2 Cl(-)/HCO(-)(3) exchanger is essential to post-weaning life. AE2 polypeptides regulate pH(i), chloride concentration, cell volume, and transepithelial ion transport in many tissues. Although the AE2a isoform has been extensively studied, the function and regulation of the other AE2 N-terminal variant mRNAs of mouse (AE2b1, AE2b2, AE2c1, and AE2c2) have not been examined. We now present an extended analysis of AE2 variant mRNA tissue distribution and function. We show in Xenopus oocytes that all AE2 variant polypeptides except AE2c2 mediated Cl(-) transport are subject to inhibition by acidic pH(i) and to activation by hypertonicity and NH(+)(4). However, AE2c1 differs from AE2a, AE2b1, and AE2b2 in its alkaline-shifted pH(o)((50)) (7.70 +/- 0.11 versus 6.80 +/- 0.05), suggesting the presence of a novel AE2a pH-sensitive regulatory site between amino acids 99 and 198. Initial N-terminal deletion mutagenesis restricted this site to the region between amino acids 120 and 150. Further analysis identified AE2a residues 127-129, 130-134, and 145-149 as jointly responsible for the difference in pH(o)((50)) between AE2c1 and the longer AE2a, AE2b1, and AE2b2 polypeptides. Thus, AE2c1 exhibits a unique pH(o) sensitivity among the murine AE2 variant polypeptides, in addition to a unique tissue distribution. Physiological coexpression of AE2c1 with other AE2 variant polypeptides in the same cell should extend the range over which changing pH(o) can regulate AE2 transport activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号