首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   6篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   5篇
  2012年   9篇
  2011年   4篇
  2010年   3篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2006年   10篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   6篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1968年   1篇
  1967年   1篇
  1957年   1篇
  1956年   2篇
排序方式: 共有127条查询结果,搜索用时 31 毫秒
91.
Pigment-protein-complexes of two chlorophyll b deficient mutants of Arabidopsis and from the wild type were separated electrophoretically. Light-harvesting proteins were absent in the chlorophyll b free mutant ch1 and their amount was reduced in the mutant ch2 which has a reduced content of chlorophyll b. The ratio of CPa:CP I increased with decreasing chlorophyll b content which indicated that the stoichiometry of photosystem II to photosystem I is not constant.Abbreviations Chl chlorophyll - CPa chlorophyll a-protein - CP I P-700 chlorophyll a-protein - LHCP light-harvesting chlorophyll a/b-protein - PAGE polyacrylamide gel electrophoresis - PAR photosynthetically active radiation - SDS sodium dodecyl sulfate  相似文献   
92.
Summary The concentration of lipophilic plastid quinones (plastoquinone, plastoquinol, -tocopherol, -tocoquinone) in the C4-plants Zea mays and Atriplex rosea is lower than in the already studied C3-plants.In Zea mays the concentration of plastid quinones increases only a little with the age of the plant and then decreases again, while the concentration of quinones in Atriplex rosea constantly rises during the whole test period of 10 weeks.The ratio of chlorophyll a:b is 3,5 in Zea mays and 3,6 in Atriplex rosea.The data lead to the supposition that the concentration of photosystem-II-components is lower than the concentration of photosystem-I-components. We assume that especially in the bundle sheath chloroplasts there is a lack of quinones. In the case of Zea mays this could be the reason for the low system-II-activity which has been found by Anderson et al. (1971).
Abkürzungen Chl Chlorophyll - Car Carotinoide - PQ 45 Plastochinon - PQH2 45 Plastohydrochinon - -T -Tocopherol - -TQ -Tocochinon  相似文献   
93.
Adult schistosomes, parasitic flatworms that cause the tropical disease schistosomiasis, have always been considered to be homolactic fermenters and, in their energy metabolism, strictly dependent on carbohydrates. However, more recent studies suggested that fatty acid β-oxidation is essential for egg production by adult female Schistosoma mansoni. To address this conundrum, we performed a comprehensive study on the lipid metabolism of S. mansoni. Incubations with [14C]-labelled fatty acids demonstrated that adults, eggs and miracidia of S. mansoni did not oxidise fatty acids, as no 14CO2 production could be detected. We then re-examined the S. mansoni genome using the genes known to be involved in fatty acid oxidation in six eukaryotic model reference species. This showed that the earlier automatically annotated genes for fatty acid oxidation were in fact incorrectly annotated. In a further analysis we could not detect any genes encoding β-oxidation enzymes, which demonstrates that S. mansoni cannot use this pathway in any of its lifecycle stages. The same was true for Schistosoma japonicum and all other schistosome species that have been sequenced. Absence of β-oxidation, however, does not imply that fatty acids from the host are not metabolised by schistosomes. Adult schistosomes can use and modify fatty acids from their host for biosynthetic purposes and incorporate those in phospholipids and neutral lipids. Female worms deposit large amounts of these lipids in the eggs they produce, which explains why interference with the lipid metabolism in females will disturb egg formation, even though fatty acid β-oxidation does not occur in schistosomes. Our analyses of S. mansoni further revealed that during the development and maturation of the miracidium inside the egg, changes in lipid composition occur which indicate that fatty acids deposited in the egg by the female worm are used for phospholipid biosynthesis required for membrane formation in the developing miracidium.  相似文献   
94.
A preliminary study on the removal of cadmium by nonmetabolizing live biomass of Rhizopus oligosporus from aqueous solution is presented. The equilibrium of the process was in all cases well described by the Langmuir sorption isotherm, suggesting that the process was a chemical, equilibrated and saturable mechanism which reflected the predominantly site-specific mechanism on the cell surface. A curve of Scatchard transformation plots reflected the covalent nature of Cd2+ adsorption by the cells. The maximum cadmium uptake capacities were 34.25 mg/g for immobilized cells and 17.09 mg/g for free cells. Some factorial experiments in shake flasks were performed in order to investigate the effect of different initial cadmium concentrations and biomass concentrations on the equilibrium. Experimental results showed a reverse trend of the influence of the immobilized and free biomass concentration on the cadmium specific uptake capacity. The immobilized cells had a higher specific cadmium uptake capacity with increasing biomass concentrations compared to free cells. In a bioreactor, the cadmium uptake capacity of immobilized cells (qmax = 30.1–37.5 mg/g) was similar to that observed in shake flask experiments (qmax = 34.25 mg/g) whereas with free cells the bioreactor qmax of 4.8–13.0 mg/g; was much lower than in shake flasks (qmax = 17.09 mg/g), suggesting that cadmium biosorption by immobilized cells of R. oligosporus might be further improved in bigger reactors. EDAX and transmission electron microscopic experiments on the fungal biomass indicated that the presence of Cd2+ sequestrated to the cell wall was due to bioadsorption.  相似文献   
95.
96.
97.
98.
The aerobic Escherichia coli C(4) -dicarboxylate transporter DctA and the anaerobic fumarate/succinate antiporter DcuB function as obligate co-sensors of the fumarate responsive sensor kinase DcuS under aerobic or anaerobic conditions respectively. Overproduction under anaerobic conditions allowed DctA to replace DcuB in co-sensing, indicating their functional equivalence in this capacity. In vivo interaction studies between DctA and DcuS using FRET or a bacterial two-hybrid system (BACTH) demonstrated their interaction. DctA-YFP bound to an affinity column and was able to retain DcuS. DctA shows substantial sequence and secondary structure conservation to Glt(Ph) , the Na(+) /glutamate symporter of Pyrococcus horikoshii with known 3D structure. Topology studies of DctA demonstrated the presence of eight transmembrane helices in an arrangement similar to that of Glt(Ph) . DctA contains an additional predicted amphipathic helix 8b on the cytoplasmic side of the membrane that is specific for DctA and not present in Glt(Ph) . Mutational analysis demonstrated the importance of helix 8b in co-sensing and interaction with DcuS, and the isolated helix 8b showed strong interaction with DcuS. In DcuS, deletion and mutation of the cytoplasmic PAS(C) domain affected the interaction between DctA and DcuS. It is concluded that DctA forms a functional unit or sensor complex with DcuS through specific interaction sites.  相似文献   
99.
The multiple circulating human influenza A virus subtypes coupled with the perpetual genomic mutations and segment reassortment events challenge the development of effective therapeutics. The capacity to drug most RNAs motivates the investigation on viral RNA targets. 123,060 segment sequences from 35,938 strains of the most prevalent subtypes also infecting humans–H1N1, 2009 pandemic H1N1, H3N2, H5N1 and H7N9, were used to identify 1,183 conserved RNA target sequences (≥15-mer) in the internal segments. 100% theoretical coverage in simultaneous heterosubtypic targeting is achieved by pairing specific sequences from the same segment (“Duals”) or from two segments (“Doubles”); 1,662 Duals and 28,463 Doubles identified. By combining specific Duals and/or Doubles to form a target graph wherein an edge connecting two vertices (target sequences) represents a Dual or Double, it is possible to hedge against antiviral resistance besides maintaining 100% heterosubtypic coverage. To evaluate the hedging potential, we define the hedge-factor as the minimum number of resistant target sequences that will render the graph to become resistant i.e. eliminate all the edges therein; a target sequence or a graph is considered resistant when it cannot achieve 100% heterosubtypic coverage. In an n-vertices graph (n ≥ 3), the hedge-factor is maximal (= n– 1) when it is a complete graph i.e. every distinct pair in a graph is either a Dual or Double. Computational analyses uncover an extensive number of complete graphs of different sizes. Monte Carlo simulations show that the mutation counts and time elapsed for a target graph to become resistant increase with the hedge-factor. Incidentally, target sequences which were reported to reduce virus titre in experiments are included in our target graphs. The identity of target sequence pairs for heterosubtypic targeting and their combinations for hedging antiviral resistance are useful toolkits to construct target graphs for different therapeutic objectives.  相似文献   
100.
Schistosome biology and proteomics: progress and challenges   总被引:1,自引:0,他引:1  
The recent availability of schistosomal genome-sequence information allows protein identification in schistosome-derived samples by mass spectrometry (proteomics). Over the last few years, several proteome studies have been performed that addressed important questions in schistosome biology. This review summarizes the applied experimental approaches that have been used so far, it provides an overview of the most important conclusions that can be drawn from the performed studies and finally discusses future challenges in this research area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号