全文获取类型
收费全文 | 450篇 |
免费 | 43篇 |
专业分类
493篇 |
出版年
2023年 | 1篇 |
2022年 | 11篇 |
2021年 | 14篇 |
2020年 | 4篇 |
2019年 | 6篇 |
2018年 | 7篇 |
2017年 | 5篇 |
2016年 | 15篇 |
2015年 | 26篇 |
2014年 | 28篇 |
2013年 | 41篇 |
2012年 | 45篇 |
2011年 | 38篇 |
2010年 | 22篇 |
2009年 | 15篇 |
2008年 | 34篇 |
2007年 | 28篇 |
2006年 | 28篇 |
2005年 | 23篇 |
2004年 | 19篇 |
2003年 | 23篇 |
2002年 | 14篇 |
2001年 | 8篇 |
2000年 | 7篇 |
1999年 | 3篇 |
1998年 | 2篇 |
1997年 | 4篇 |
1995年 | 3篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 3篇 |
1990年 | 2篇 |
1987年 | 2篇 |
1985年 | 2篇 |
1979年 | 1篇 |
1977年 | 4篇 |
1976年 | 1篇 |
排序方式: 共有493条查询结果,搜索用时 15 毫秒
11.
Complexity, connectivity, and duplicability as barriers to lateral gene transfer 总被引:1,自引:1,他引:1 下载免费PDF全文
Background
Lateral gene transfer is a major force in microbial evolution and a great source of genetic innovation in prokaryotes. Protein complexity has been claimed to be a barrier for gene transfer, due to either the inability of a new gene's encoded protein to become a subunit of an existing complex (lack of positive selection), or from a harmful effect exerted by the newcomer on native protein assemblages (negative selection).Results
We tested these scenarios using data from the model prokaryote Escherichia coli. Surprisingly, the data did not support an inverse link between membership in protein complexes and gene transfer. As the complexity hypothesis, in its strictest sense, seemed valid only to essential complexes, we broadened its scope to include connectivity in general. Transferred genes are found to be less involved in protein-protein interactions, outside stable complexes, and this is especially true for genes recently transferred to the E. coli genome. Thus, subsequent to transfer, new genes probably integrate slowly into existing protein-interaction networks. We show that a low duplicability of a gene is linked to a lower chance of being horizontally transferred. Notably, many essential genes in E. coli are conserved as singletons across multiple related genomes, have high connectivity and a highly vertical phylogenetic signal.Conclusion
High complexity and connectivity generally do not impede gene transfer. However, essential genes that exhibit low duplicability and high connectivity do exhibit mostly vertical descent. 相似文献12.
Leeat Keren Ora Zackay Maya Lotan‐Pompan Uri Barenholz Erez Dekel Vered Sasson Guy Aidelberg Anat Bren Danny Zeevi Adina Weinberger Uri Alon Ron Milo Eran Segal 《Molecular systems biology》2013,9(1)
Most genes change expression levels across conditions, but it is unclear which of these changes represents specific regulation and what determines their quantitative degree. Here, we accurately measured activities of ~900 S. cerevisiae and ~1800 E. coli promoters using fluorescent reporters. We show that in both organisms 60–90% of promoters change their expression between conditions by a constant global scaling factor that depends only on the conditions and not on the promoter's identity. Quantifying such global effects allows precise characterization of specific regulation—promoters deviating from the global scale line. These are organized into few functionally related groups that also adhere to scale lines and preserve their relative activities across conditions. Thus, only several scaling factors suffice to accurately describe genome‐wide expression profiles across conditions. We present a parameter‐free passive resource allocation model that quantitatively accounts for the global scaling factors. It suggests that many changes in expression across conditions result from global effects and not specific regulation, and provides means for quantitative interpretation of expression profiles. 相似文献
13.
14.
Gideon Y. Stein Gabriel Herscovici Roman Korenfeld Shlomi Matetzky Shmuel Gottlieb Danny Alon Natalie Gevrielov-Yusim Zaza Iakobishvili Shmuel Fuchs 《PloS one》2014,9(1)
Background
Type-II MI is defined as myocardial infarction (MI) secondary to ischemia due to either increased oxygen demand or decreased supply. This categorization has been used for the last five years, yet, little is known about patient characteristics and clinical outcomes. In the current work we assessed the epidemiology, causes, management and outcomes of type II MI patients.Methods
A comparative analysis was performed between patients with type-I and type-II MI who participated in two prospective national Acute Coronary Syndrome Israeli Surveys (ACSIS) performed in 2008 and 2010.Results
The surveys included 2818 patients with acute MI of whom 127 (4.5%) had type-II MI. The main causes of type-II MI were anemia (31%), sepsis (24%), and arrhythmia (17%). Patients with type-II MI tended to be older (75.6±12 vs. 63.8±13, p<0.0001), female majority (43.3% vs. 22.3%, p<0.0001), had more frequently impaired functional level (45.7% vs. 17%, p<0.0001) and a higher GRACE risk score (150±32 vs. 110±35, p<0.0001). Patients with type-II MI were significantly less often referred for coronary interventions (36% vs. 89%, p<0.0001) and less frequently prescribed guideline-directed medical therapy. Mortality rates were substantially higher among patients with type-II MI both at thirty-day (13.6% vs. 4.9%, p<0.0001) and at one-year (23.9% vs. 8.6%, p<0.0001) follow-ups.Conclusions
Patients with type-II compared to type-I MI have distinct demographics, increased prevalence of multiple comorbidities, a high-risk cardiovascular profile and an overall worse outcome. The complex medical condition of this cohort imposes a great therapeutic challenge and specific guidelines with recommended medical treatment and invasive strategies are warranted. 相似文献15.
16.
Wet electron microscopy (EM) is a new imaging method with the potential to allow higher spatial resolution of samples. In contrast to most EM methods, it requires little time to perform and does not require complicated equipment or difficult steps. We used this method on a common murine macrophage cell line, IC-21, in combination with various stains and preparations, to collect high resolution images of the actin cytoskeleton. Most importantly, we demonstrated the use of quantum dots in conjunction with this technique to perform light/electron correlation microscopy. We found that wet EM is a useful tool that fits into a niche between the simplicity of light microscopy and the high spatial resolution of EM. 相似文献
17.
Cell interaction with the extracellular matrices produced by endothelial cells and fibroblasts 总被引:6,自引:0,他引:6
R. Fridman Y. Alon F. Doljanski Z. Fuks I. Vlodavsky 《Experimental cell research》1985,158(2):461-476
The extracellular matrices (ECM) produced by cultured bovine corneal endothelial cells and chick embryo fibroblasts were compared for their induction of cell attachment, proliferation and differentiation. The corneal endothelial ECM (cECM) induced a comparable and rapid attachment and flattening of both human Ewing's sarcoma and colon carcinoma cells which utilize fibronectin and laminin as adhesive glycoproteins, respectively. In contrast, the ECM produced by fibroblasts (fECM) readily supported the attachment and flattening of Ewing's sarcoma cells but had only a small effect on the carcinoma cells. Vascular endothelial cells were stimulated to proliferate by both types of matrices, but to a lesser extent by the fECM. In contrast, the formation of a closely apposed, non-overlapping and contact-inhibited endothelial cell monolayer was only dictated by the cECM. Vascular endothelial cells cultured on fECM grew on top of each other and incorporated [3H]thymidine even late at confluency. Neurite outgrowth (ciliary ganglion cells) and network formation (adult rat oligodendrocytes) were promoted by both types of matrices but in a more consistent manner with the cECM. It is likely that the small amounts of laminin deposited by chick embryo fibroblasts into their ECM are responsible for its efficient induction of neurite outgrowth and for the limited degree of carcinoma cell attachment and flattening. It is thus demonstrated that differences in chemical composition and supramolecular arrangement between cECM and fECM result not only in differences in the attachment, spreading and proliferative responses of cells but also in the expression of their characteristic morphological appearance and differentiated functions. 相似文献
18.
Karni A Abraham M Monsonego A Cai G Freeman GJ Hafler D Khoury SJ Weiner HL 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(6):4196-4202
Multiple sclerosis (MS) is postulated to be a T cell-mediated autoimmune disease characterized clinically by a relapsing-remitting (RR) stage followed by a secondary progressive (SP) phase. The progressive phase is felt to be secondary to neuronal degenerative changes triggered by inflammation. The status of the innate immune system and its relationship to the stages of MS is not well understood. Dendritic cells (DCs) are professional APCs that are central cells of the innate immune system and have the unique capacity to induce primary immune responses. We investigated circulating myeloid DCs isolated directly from the blood to determine whether there were abnormalities in myeloid DCs in MS and whether they were related to disease stage. We found that SP-MS subjects had an increased percentage of DCs expressing CD80, a decreased percentage expressing PD-L1, and an increased percentage producing IL-12 and TNF-alpha compared with RR-MS or controls. A higher percentage of DCs from both RR and SP-MS patients expressed CD40 compared with controls. We then investigated the polarization effect of DCs from MS patients on naive T cells taken from cord blood using a MLR assay. Whereas DCs from RR-MS induced higher levels of Th1 (IFN-gamma, TNF-alpha) and Th2 (IL-4, IL-13) cytokines compared with controls, DCs from SP-MS only induced a polarized Th1 response. These results demonstrate abnormalities of DCs in MS and may explain the immunologic basis for the different stages and clinical patterns of MS. 相似文献
19.
Facilitated variation: how evolution learns from past environments to generalize to new environments 下载免费PDF全文
One of the striking features of evolution is the appearance of novel structures in organisms. Recently, Kirschner and Gerhart have integrated discoveries in evolution, genetics, and developmental biology to form a theory of facilitated variation (FV). The key observation is that organisms are designed such that random genetic changes are channeled in phenotypic directions that are potentially useful. An open question is how FV spontaneously emerges during evolution. Here, we address this by means of computer simulations of two well-studied model systems, logic circuits and RNA secondary structure. We find that evolution of FV is enhanced in environments that change from time to time in a systematic way: the varying environments are made of the same set of subgoals but in different combinations. We find that organisms that evolve under such varying goals not only remember their history but also generalize to future environments, exhibiting high adaptability to novel goals. Rapid adaptation is seen to goals composed of the same subgoals in novel combinations, and to goals where one of the subgoals was never seen in the history of the organism. The mechanisms for such enhanced generation of novelty (generalization) are analyzed, as is the way that organisms store information in their genomes about their past environments. Elements of facilitated variation theory, such as weak regulatory linkage, modularity, and reduced pleiotropy of mutations, evolve spontaneously under these conditions. Thus, environments that change in a systematic, modular fashion seem to promote facilitated variation and allow evolution to generalize to novel conditions. 相似文献
20.